Zepp, Simone und Heiden, Uta und Bachmann, Martin und Wiesmeier, Martin und Steininger, Michael und Wesemael, Bas van (2021) Estimation of Soil Organic Carbon Contents in Croplands of Bavaria from SCMaP Soil Reflectance Composites. Remote Sensing, 13 (3141), Seiten 1-25. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs13163141. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
9MB |
Offizielle URL: https://www.mdpi.com/2072-4292/13/16/3141
Kurzfassung
For food security issues or global climate change, there is a growing need for large-scale knowledge of soil organic carbon (SOC) contents in agricultural soils. To capture and quantify SOC contents at a field scale, Earth Observation (EO) can be a valuable data source for area-wide mapping. The extraction of exposed soils from EO data is challenging due to temporal or permanent vegetation cover, the influence of soil moisture or the condition of the soil surface. Compositing techniques of multitemporal satellite images provide an alternative to retrieve exposed soils and to produce a data source. The repeatable soil composites, containing averaged exposed soil areas over several years, are relatively independent from seasonal soil moisture and surface conditions and provide a new EO-based data source that can be used to estimate SOC contents over large geographical areas with a high spatial resolution. Here, we applied the Soil Composite Mapping Processor (SCMaP) to the Landsat archive between 1984 and 2014 of images covering Bavaria, Germany. Compared to existing SOC modeling approaches based on single scenes, the 30-year SCMaP soil reflectance composite (SRC) with a spatial resolution of 30 m is used. The SRC spectral information is correlated with point soil data using different machine learning algorithms to estimate the SOC contents in cropland topsoils of Bavaria. We developed a pre processing technique to address the issue of combining point information with EO pixels for the purpose of modeling. We applied different modeling methods often used in EO soil studies to choose the best SOC prediction model. Based on the model accuracies and performances, the Random Forest (RF) showed the best capabilities to predict the SOC contents in Bavaria (R2 = 0.67, RMSE = 1.24%, RPD = 1.77, CCC = 0.78). We further validated the model results with an independent dataset. The comparison between the measured and predicted SOC contents showed a mean difference of 0.11% SOC using the best RF model. The SCMaP SRC is a promising approach to predict the spatial SOC distribution over large geographical extents with a high spatial resolution (30 m).
elib-URL des Eintrags: | https://elib.dlr.de/143461/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Estimation of Soil Organic Carbon Contents in Croplands of Bavaria from SCMaP Soil Reflectance Composites | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 8 August 2021 | ||||||||||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 13 | ||||||||||||||||||||||||||||
DOI: | 10.3390/rs13163141 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-25 | ||||||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||||||
Name der Reihe: | Special Issue Remote Sensing for Soil Organic Carbon Mapping and Monitoring | ||||||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | soil reflectance composites, soil modeling, soil organic carbon, SOC Landsat multispectral | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||||||
Hinterlegt von: | Zepp, Simone | ||||||||||||||||||||||||||||
Hinterlegt am: | 21 Sep 2021 12:40 | ||||||||||||||||||||||||||||
Letzte Änderung: | 21 Sep 2021 12:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags