Bussemaker, Jasper und Bartoli, Nathalie und Lefebvre, Thierry und Ciampa, Pier Davide und Nagel, Björn (2021) Effectiveness of Surrogate-Based Optimization Algorithms for System Architecture Optimization. In: AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021. AIAA AVIATION 2021 Forum, 2021-08-02 - 2021-08-06, Virtual Event. doi: 10.2514/6.2021-3095. ISBN 978-162410610-1.
PDF
4MB |
Offizielle URL: http://dx.doi.org/10.2514/6.2021-3095
Kurzfassung
The design of complex system architectures brings with it a number of challenging issues, among others large combinatorial design spaces. Optimization can be applied to explore the design space, however gradient-based optimization algorithms cannot be applied due to the mixed-discrete nature of the design variables. It is investigated how effective surrogate-based optimization algorithms are for solving the black-box, hierarchical, mixed-discrete, multi-objective system architecture optimization problems. Performance is compared to the NSGA-II multi-objective evolutionary algorithm. An analytical benchmark problem that exhibits most important characteristics of architecture optimization is defined. First, an investigation into algorithm effectiveness is performed by measuring how accurately a known Pareto-front can be approximated for a fixed number of function evaluations. Then, algorithm efficiency is investigated by applying various multi-objective convergence criteria to the algorithms and establishing the possible trade-off between result quality and function evaluations needed. Finally, the impact of hidden constraints on algorithm performance is investigated. The code used for this paper has been published.
elib-URL des Eintrags: | https://elib.dlr.de/143456/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||||||
Titel: | Effectiveness of Surrogate-Based Optimization Algorithms for System Architecture Optimization | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 28 Juli 2021 | ||||||||||||||||||||||||
Erschienen in: | AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2021 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.2514/6.2021-3095 | ||||||||||||||||||||||||
ISBN: | 978-162410610-1 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | mdo, optimization, surrogate-based optimization, kriging, rbf, system architecting | ||||||||||||||||||||||||
Veranstaltungstitel: | AIAA AVIATION 2021 Forum | ||||||||||||||||||||||||
Veranstaltungsort: | Virtual Event | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 2 August 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 6 August 2021 | ||||||||||||||||||||||||
Veranstalter : | AIAA | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||||||||||
Standort: | Hamburg | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systemarchitekturen in der Luftfahrt > Flugzeugentwurf und Systemintegration | ||||||||||||||||||||||||
Hinterlegt von: | Bussemaker, Jasper | ||||||||||||||||||||||||
Hinterlegt am: | 10 Aug 2021 07:13 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags