elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Particle size effects on dislocation density, microstructure, and phase transformation for high-entropy alloy powders

Jeon, Sangho und Liu, Xuanjiang und Azersky, Colby und Ren, Jie und Zhang, Shengbiao und Chen, Wen und Hyers, Robert W. und Costa, Kelly und Kolbe, Matthias und Matson, D. M. (2021) Particle size effects on dislocation density, microstructure, and phase transformation for high-entropy alloy powders. Materialia, 18, Seite 101161. Elsevier. doi: 10.1016/j.mtla.2021.101161. ISSN 2589-1529.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S2589152921001642

Kurzfassung

Recrystallization and phase transformation reactions are driven by energy stored in the parent phase due to previous processing history. Grain boundaries, lattice strain, and dislocation networks may affect subsequent microstructural evolution, especially during metal powder consolidation processes. In this work, AlCrFe2Ni2 eutectic high-entropy alloy powders over a wide range of size distribution were used to investigate the correlation between dislocation density and microstructure as a function of particle size. Line profile analysis of the X-ray diffraction patterns of the as-received (quenched) samples shows that the dislocation density increases linearly with decreasing particle size. Based on microstructure analysis of the as-quenched and the annealed samples, it is found that the correlation is associated with the grain boundary length which increases with decreasing particle size, revealing that the key source of dislocation density is dislocations within the grain boundaries. The grain boundary energy acts as a driving force for the metastable to stable phase transformation of AlCrFe2Ni2, showing that the phase transformation kinetics is a function of particle size. This work shows a direct experimental observation and quantitative analysis that in metallic powder systems particle size is one of the key parameters which affects the dislocation density and the phase transformation kinetics most probably due to the different cooling rates achieved during powder production.

elib-URL des Eintrags:https://elib.dlr.de/143346/
Dokumentart:Zeitschriftenbeitrag
Titel:Particle size effects on dislocation density, microstructure, and phase transformation for high-entropy alloy powders
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Jeon, SanghoDepartment of Mechanical Engineering, Tufts University, Medford, MA02155, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Liu, XuanjiangDepartment of Mechanical Engineering, Tufts University, Medford, MA02155, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Azersky, ColbyDepartment of Mechanical Engineering, Tufts University, Medford, MA02155, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ren, JieDepartment of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003-2210, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhang, ShengbiaoDepartment of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003-2210, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Chen, WenDepartment of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003-2210, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hyers, Robert W.University of Massachusetts, Amherst MA, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Costa, KellyHitchiner Manufacturing Co. Inc., Milford, NH 03055, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kolbe, Matthiasinstitut für materialphysik im weltraum, dlr, kölnNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Matson, D. M.Tufts University, Medfort, MA, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:13 Juli 2021
Erschienen in:Materialia
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:18
DOI:10.1016/j.mtla.2021.101161
Seitenbereich:Seite 101161
Verlag:Elsevier
ISSN:2589-1529
Status:veröffentlicht
Stichwörter:dislocation density, powder alloy, high entropy alloy, X-ray line profile analysis, grain boundaries
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Forschung unter Weltraumbedingungen
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R FR - Forschung unter Weltraumbedingungen
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt EML3
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Materialphysik im Weltraum > Wissenschaftliche Experimente
Hinterlegt von: Kolbe, Matthias
Hinterlegt am:09 Aug 2021 08:41
Letzte Änderung:20 Okt 2023 08:05

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.