Nesteruk, Sergey und Shadrin, Dmitrii und Pukalchik, Mariia und Andrey, Somov und conrad, Zeidler und Zabel, Paul und Schubert, Daniel (2021) Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case. IEEE Sensors Journal, 1 (1). IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSEN.2021.3050084. ISSN 1530-437X.
PDF
- Preprintversion (eingereichte Entwurfsversion)
6MB |
Kurzfassung
In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication limitations between Antarctica and Europe, we first propose the image compression mechanism for the data collection. We show that we can compress the images, on average, 7.2 times for efficient transmission over the weak channel. Moreover, we prove that decompressed images can be further used for computer vision applications. Upon decompressing images, we apply machine learning for the classification task. We achieve 92.6% accuracy on an 18-classes unbalanced dataset. The proposed approach is promising for a number of agriculture related applications, including the plant classification, identification of plant diseases, and deviation of plant phenology
elib-URL des Eintrags: | https://elib.dlr.de/143259/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 9 Januar 2021 | ||||||||||||||||||||||||||||||||
Erschienen in: | IEEE Sensors Journal | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 1 | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/JSEN.2021.3050084 | ||||||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||
ISSN: | 1530-437X | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Classification, computer vision, controlledenvironment agriculture, image compression, machine learning | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - EDEN ISS Follow-on | ||||||||||||||||||||||||||||||||
Standort: | Bremen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Raumfahrtsysteme > Systemanalyse Raumsegment | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Schubert, Daniel | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 27 Jul 2021 10:35 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 05 Dez 2023 07:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags