Ahlswede, Steve und Asam, Sarah und Röder, Achim (2021) Hedgerow object detection in very high-resolution satellite images using convolutional neural networks. Journal of Applied Remote Sensing, 15 (1), Seiten 1-28. Society of Photo-optical Instrumentation Engineers (SPIE). doi: 10.1117/1.JRS.15.018501. ISSN 1931-3195.
PDF
- Verlagsversion (veröffentlichte Fassung)
17MB |
Kurzfassung
Hedgerows are one of the few remaining natural landscape features within European agricultural areas. To facilitate hedgerow monitoring, cost-effective and accurate mapping of hedgerows across large spatial scales is required. Current methods used for automatic hedgerow detection are overly complicated and generalize poorly to larger areas. We examine the application of transfer learning using two neural networks (Mask R-CNN and DeepLab v3+) for hedgerow mapping in south-eastern Germany using IKONOS imagery. We demonstrate the potential of such networks for hedgerow monitoring by investigating performances across varying input image bands, seasonal imagery, and image augmentation strategies. Both networks successfully detected hedgerows across a large spatial scale (562 km2), with DeepLab v3+ (75% F1-score) outperforming Mask R-CNN. Differences between band combinations were minimal, implying hedgerow detection could be achieved using RGB sensors. Results suggested that using all available training images across seasons is preferred and should have the same model generalizing effects as data augmentation. Experiments with varying data augmentations found augmentations effecting object geometries to greatly increase performance for both networks while results using augmentations modifying pixel spectral values showed concerning effects. Overall, our study finds that transfer learning in neural networks offers a simplified approach that outperforms previously established methods.
elib-URL des Eintrags: | https://elib.dlr.de/143162/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Hedgerow object detection in very high-resolution satellite images using convolutional neural networks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 5 Januar 2021 | ||||||||||||||||
Erschienen in: | Journal of Applied Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 15 | ||||||||||||||||
DOI: | 10.1117/1.JRS.15.018501 | ||||||||||||||||
Seitenbereich: | Seiten 1-28 | ||||||||||||||||
Verlag: | Society of Photo-optical Instrumentation Engineers (SPIE) | ||||||||||||||||
ISSN: | 1931-3195 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | deep learning image segmentation data augmentation hedgerow mapping Mask R-CNN DeepLab v3+ | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche | ||||||||||||||||
Hinterlegt von: | Asam, Dr. Sarah | ||||||||||||||||
Hinterlegt am: | 26 Jul 2021 14:21 | ||||||||||||||||
Letzte Änderung: | 26 Jul 2021 14:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags