elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Hedgerow object detection in very high-resolution satellite images using convolutional neural networks

Ahlswede, Steve und Asam, Sarah und Röder, Achim (2021) Hedgerow object detection in very high-resolution satellite images using convolutional neural networks. Journal of Applied Remote Sensing, 15 (1), Seiten 1-28. Society of Photo-optical Instrumentation Engineers (SPIE). doi: 10.1117/1.JRS.15.018501. ISSN 1931-3195.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
17MB

Kurzfassung

Hedgerows are one of the few remaining natural landscape features within European agricultural areas. To facilitate hedgerow monitoring, cost-effective and accurate mapping of hedgerows across large spatial scales is required. Current methods used for automatic hedgerow detection are overly complicated and generalize poorly to larger areas. We examine the application of transfer learning using two neural networks (Mask R-CNN and DeepLab v3+) for hedgerow mapping in south-eastern Germany using IKONOS imagery. We demonstrate the potential of such networks for hedgerow monitoring by investigating performances across varying input image bands, seasonal imagery, and image augmentation strategies. Both networks successfully detected hedgerows across a large spatial scale (562  km2), with DeepLab v3+ (75% F1-score) outperforming Mask R-CNN. Differences between band combinations were minimal, implying hedgerow detection could be achieved using RGB sensors. Results suggested that using all available training images across seasons is preferred and should have the same model generalizing effects as data augmentation. Experiments with varying data augmentations found augmentations effecting object geometries to greatly increase performance for both networks while results using augmentations modifying pixel spectral values showed concerning effects. Overall, our study finds that transfer learning in neural networks offers a simplified approach that outperforms previously established methods.

elib-URL des Eintrags:https://elib.dlr.de/143162/
Dokumentart:Zeitschriftenbeitrag
Titel:Hedgerow object detection in very high-resolution satellite images using convolutional neural networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ahlswede, SteveUniversität TrierNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Asam, Sarahsarah.asam (at) dlr.dehttps://orcid.org/0000-0002-7302-6813NICHT SPEZIFIZIERT
Röder, AchimUniversität TrierNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:5 Januar 2021
Erschienen in:Journal of Applied Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:15
DOI:10.1117/1.JRS.15.018501
Seitenbereich:Seiten 1-28
Verlag:Society of Photo-optical Instrumentation Engineers (SPIE)
ISSN:1931-3195
Status:veröffentlicht
Stichwörter:deep learning image segmentation data augmentation hedgerow mapping Mask R-CNN DeepLab v3+
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Asam, Dr. Sarah
Hinterlegt am:26 Jul 2021 14:21
Letzte Änderung:26 Jul 2021 14:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.