elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Extrapolating satellite-based flood masks by one-class classification - a test case in Houston

Brill, Fabio und Schlaffer, Stefan und Martinis, Sandro und Schröter, Kai und Kraibich, Heidi (2021) Extrapolating satellite-based flood masks by one-class classification - a test case in Houston. Remote Sensing, 13 (11), Seiten 1-24. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs13112042. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
16MB

Offizielle URL: https://www.mdpi.com/2072-4292/13/11/2042

Kurzfassung

Flood masks are among the most common remote sensing products, used for rapid crisis information and as input for hydraulic and impact models. Despite the high relevance of such products, vegetated and urban areas are still unreliably mapped and are sometimes even excluded from analysis. The information content of synthetic aperture radar (SAR) images is limited in these areas due to the side-looking imaging geometry of radar sensors and complex interactions of the microwave signal with trees and urban structures. Classification from SAR data can only be optimized to reduce false positives, but cannot avoid false negatives in areas that are essentially unobservable to the sensor, for example, due to radar shadows, layover, speckle and other effects. We therefore propose to treat satellite-based flood masks as intermediate products with true positives, and unlabeled cells instead of negatives. This corresponds to the input of a positive-unlabeled (PU) learning one-class classifier (OCC). Assuming that flood extent is at least partially explainable by topography, we present a novel procedure to estimate the true extent of the flood, given the initial mask, by using the satellite-based products as input to a PU OCC algorithm learned on topographic features. Additional rainfall data and distance to buildings had only minor effect on the models in our experiments. All three of the tested initial flood masks were considerably improved by the presented procedure, with obtainable increases in the overall k score ranging from 0.2 for a high quality initial mask to 0.7 in the best case for a standard emergency response product. An assessment of k for vegetated and urban areas separately shows that the performance in urban areas is still better when learning from a high quality initial mask.

elib-URL des Eintrags:https://elib.dlr.de/143086/
Dokumentart:Zeitschriftenbeitrag
Titel:Extrapolating satellite-based flood masks by one-class classification - a test case in Houston
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Brill, FabioGeoforschungszentrum PotsdamNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schlaffer, Stefanstefan.schlaffer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Martinis, Sandrosandro.martinis (at) dlr.dehttps://orcid.org/0000-0002-6400-361XNICHT SPEZIFIZIERT
Schröter, KaiGeoforschungszentrum PotsdamNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kraibich, HeidiGeoforschungszentrum PotsdamNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:24 Mai 2021
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:13
DOI:10.3390/rs13112042
Seitenbereich:Seiten 1-24
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:urban flood mapping; flood mask; one-class classification; pu learning; extrapolation; topographic features
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Martinis, Sandro
Hinterlegt am:12 Jul 2021 09:57
Letzte Änderung:05 Dez 2023 09:34

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.