elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Code-to-code comparison of realistic wind turbine instability phenomena

Verdonck, Hendrik und Hach, Oliver und Polman, Jelmer und Balzani, Claudio und Braun, Otto und Müller, Sarah und Rieke, Johannes (2021) Code-to-code comparison of realistic wind turbine instability phenomena. Wind Energy Science Conference, 2021-05-25 - 2021-05-28, Hannover, Germany.

[img] PDF - Nur DLR-intern zugänglich
2MB

Kurzfassung

Preceding studies (Hach et al, 2020) show significant differences in the prediction of dynamic aeroelastic instabilities with state-of-the-art simulation tools. Instabilities were provoked by an overspeed scenario where the wind speed increases, but no counteracting generator moment was imposed. Significant differences between the tools were found in the critical speed and instability behavior. A negative side effect of the runaway procedure is that the operating conditions at which the instability occurred could be vastly different. Differences in the instability mechanisms could therefore be in part allocated to these differing operating conditions. The aim of this study is to find a critical configuration model which becomes unstable under nominal, controlled operating conditions. The expectation was that the establishing instability mechanism would be more representative for potential aeroelastic phenomena which could be experienced on current or future turbines (Volk et al, 2020). State-of-the-art simulation models are used to give insight in the instability phenomena and to compare their respective modeling capabilities. These included two general purpose multi-body simulation tools (alaska/Wind and Simpack) and three industry relevant turbine simulation tools (Bladed, HAWC2, OpenFAST). Simulations were executed both in the time domain (all tools) and in the frequency domain (Bladed and HAWCStab2). The publicly available reference wind turbine model IWT-7.5-164 served as reference for the comparison. The global flapwise, edgewise and torsional stiffnesses were reduced over the full blade to enforce instabilities under nominal operating conditions. A recomputation of the stiffness matrices was performed with the adjusted input in order to assure equivalent stiffness reductions across all tools. Consistency across the models was verified by a blade and full model modal analysis, static structural deformation tests and a steady aeroelastic deformation test. The final stability analysis was performed for multiple points along the nominal control curve. Unstable time domain simulations were analyzed by a frequency analysis to determine the instability mechanism. This also allowed a comparison between the time domain and the frequency domain simulation tools. A comparison is shown for the aeroelastic modes which play a role in the instability mechanisms. The agreement between the linearization results of Bladed and HAWCStab2 is satisfying. All simulation tools exhibit comparable unstable behavior with a significant participation of the 1st and/or 2nd edge bending modes of the blades. Large differences are observed between critical wind speeds in the time domain simulation results. Preliminary analyses reveal discrepancies in the damping associated with the vibrations. The presented comparison demonstrates that the observed instability mechanism matches across the aeroelastic simulation tools if the operating conditions are close enough - which is not always the case in a runaway analysis. To provoke an instability in the normal operating range the stiffness of the rotor blades was decreased significantly. It was found that the stiffness matrices needed to be re-computed since independently reducing the principle stiffnesses in flap/edge/torsion leads to inconsistent models.

elib-URL des Eintrags:https://elib.dlr.de/142903/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Code-to-code comparison of realistic wind turbine instability phenomena
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Verdonck, Hendrikhendrik.verdonck (at) dlr.dehttps://orcid.org/0009-0007-8271-8292NICHT SPEZIFIZIERT
Hach, OliverOliver.Hach (at) dlr.dehttps://orcid.org/0000-0001-5317-4176NICHT SPEZIFIZIERT
Polman, JelmerLeibnitz Universität HannoverNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Balzani, ClaudioLeibnitz Universität HannoverNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Braun, OttoLeibnitz Universität HannoverNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Müller, SarahNordex Energy GmbHNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rieke, JohannesNordex Energy GmbHNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:28 Mai 2021
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:wind energy, stability, code-to-code comparison
Veranstaltungstitel:Wind Energy Science Conference
Veranstaltungsort:Hannover, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:25 Mai 2021
Veranstaltungsende:28 Mai 2021
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Photovoltaik und Windenergie
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Windenergie
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik > Aeroelastische Simulation
Hinterlegt von: Verdonck, Hendrik
Hinterlegt am:31 Aug 2021 14:12
Letzte Änderung:24 Apr 2024 20:42

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.