elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Controlling nonlinear dynamical systems into arbitrary states using machine learning

Haluszczynski, Alexander und Räth, Christoph (2021) Controlling nonlinear dynamical systems into arbitrary states using machine learning. Scientific Reports, 11, Seite 12991. Nature Publishing Group. doi: 10.1038/s41598-021-92244-6. ISSN 2045-2322.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://www.nature.com/articles/s41598-021-92244-6

Kurzfassung

Controlling nonlinear dynamical systems is a central task in many different areas of science and engineering. Chaotic systems can be stabilized (or chaotified) with small perturbations, yet existing approaches either require knowledge about the underlying system equations or large data sets as they rely on phase space methods. In this work we propose a novel and fully data driven scheme relying on machine learning (ML), which generalizes control techniques of chaotic systems without requiring a mathematical model for its dynamics. Exploiting recently developed ML-based prediction capabilities, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state. We outline and validate our approach using the examples of the Lorenz and the Rössler system and show how these systems can very accurately be brought not only to periodic, but even to intermittent and different chaotic behavior. Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications ranging from engineering to medicine.

elib-URL des Eintrags:https://elib.dlr.de/142865/
Dokumentart:Zeitschriftenbeitrag
Titel:Controlling nonlinear dynamical systems into arbitrary states using machine learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Haluszczynski, AlexanderLMU MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Räth, ChristophChristoph.Raeth (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:21 Juni 2021
Erschienen in:Scientific Reports
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.1038/s41598-021-92244-6
Seitenbereich:Seite 12991
Verlag:Nature Publishing Group
ISSN:2045-2322
Status:veröffentlicht
Stichwörter:Complex Systems, Chaos, Controlling, Prediction, Machine Learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Forschung unter Weltraumbedingungen
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R FR - Forschung unter Weltraumbedingungen
DLR - Teilgebiet (Projekt, Vorhaben):R - PK-4
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Materialphysik im Weltraum > Gruppe Komplexe Plasmen
Hinterlegt von: Räth, Christoph
Hinterlegt am:14 Jul 2021 15:44
Letzte Änderung:05 Dez 2023 07:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.