Meister, Sebastian und Wermes, Mahdieu A. M. und Stüve, Jan und Groves, Roger M. (2021) Explainability of deep learning classifier decisions for optical detection of manufacturing defects in the automated fiber placement process. In: Conference on Automated Visual Inspection and Machine Vision IV (11787). SPIE Automated Visual Inspection and Machine Vision IV, 2021-06-21 - 2021-06-25, München. doi: 10.1117/12.2592584. ISBN 978-1-5106-4409-0. ISSN 0277-786X.
PDF
- Nur DLR-intern zugänglich bis 1 Januar 2032
7MB |
Kurzfassung
Automated fibre layup techniques are commonly used composite manufacturing processes in the aviation sector and require a manual visual inspection. Neural Network classification of defects has the potential to automate this visual inspection, however, the machine decision-making processes are hard to verify. Thus, we present an approach for visualising Convolutional Neural Network (CNN) based classifications of manufacturing defects and quantifying its robustness suitably. Our investigations have shown that especially Smoothed Integrated Gradients and DeepSHAP are particularly well suited for the visualisation of CNN classifications. The Smoothed Integrated Gradients technique also reveals advantages in robustness when evaluating degraded input images.
elib-URL des Eintrags: | https://elib.dlr.de/142832/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Explainability of deep learning classifier decisions for optical detection of manufacturing defects in the automated fiber placement process | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juni 2021 | ||||||||||||||||||||
Erschienen in: | Conference on Automated Visual Inspection and Machine Vision IV | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1117/12.2592584 | ||||||||||||||||||||
Name der Reihe: | Proceedings of SPIE | ||||||||||||||||||||
ISSN: | 0277-786X | ||||||||||||||||||||
ISBN: | 978-1-5106-4409-0 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Defect classifications, CNN, Inline Inspection, xAI, Computer Vision, Composite Manufacturing, Laser Line Scan Sensor | ||||||||||||||||||||
Veranstaltungstitel: | SPIE Automated Visual Inspection and Machine Vision IV | ||||||||||||||||||||
Veranstaltungsort: | München | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 21 Juni 2021 | ||||||||||||||||||||
Veranstaltungsende: | 25 Juni 2021 | ||||||||||||||||||||
Veranstalter : | SPIE | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Produktionstechnologien | ||||||||||||||||||||
Standort: | Stade | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Faserverbundleichtbau und Adaptronik > Verbundprozesstechnologien | ||||||||||||||||||||
Hinterlegt von: | Meister, Dr. Sebastian | ||||||||||||||||||||
Hinterlegt am: | 28 Jun 2021 07:59 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags