elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Measuring sleep regularity: Theoretical properties and practical usage of existing metrics

Fischer, D. und Klerman, E.B. und Phillips, A.J.K. (2021) Measuring sleep regularity: Theoretical properties and practical usage of existing metrics. Sleep, 44 (10), zsab103. The American Academy of Sleep Medicine. doi: 10.1093/sleep/zsab103. ISSN 0161-8105.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://doi.org/10.1093/sleep/zsab103

Kurzfassung

Study Objectives: Sleep regularity predicts many health-related outcomes. Currently, however, there is no systematic approach to measuring sleep regularity. Traditionally, metrics have assessed deviations in sleep patterns from an individual’s average. Traditional metrics include intra-individual standard deviation (StDev), Interdaily Stability (IS), and Social Jet Lag (SJL). Two metrics were recently proposed that instead measure variability between consecutive days: Composite Phase Deviation (CPD) and Sleep Regularity Index (SRI). Using large-scale simulations, we investigated the theoretical properties of these five metrics. Methods: Multiple sleep-wake patterns were systematically simulated, including variability in daily sleep timing and/or duration. Average estimates and 95% confidence intervals were calculated for six scenarios that affect measurement of sleep regularity: ‘scrambling’ the order of days; daily vs. weekly variation; naps; awakenings; ‘all-nighters’; and length of study. Results: SJL measured weekly but not daily changes. Scrambling did not affect StDev or IS, but did affect CPD and SRI; these metrics, therefore, measure sleep regularity on multi-day and day-to-day timescales, respectively. StDev and CPD did not capture sleep fragmentation. IS and SRI behaved similarly in response to naps and awakenings but differed markedly for all-nighters. StDev and IS required over a week of sleep-wake data for unbiased estimates, whereas CPD and SRI required larger sample sizes to detect group differences. Conclusions: Deciding which sleep regularity metric is most appropriate for a given study depends on a combination of the type of data gathered, the study length and sample size, and which aspects of sleep regularity are most pertinent to the research question.

elib-URL des Eintrags:https://elib.dlr.de/142301/
Dokumentart:Zeitschriftenbeitrag
Titel:Measuring sleep regularity: Theoretical properties and practical usage of existing metrics
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fischer, D.dorothee.fischer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Klerman, E.B.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Phillips, A.J.K.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:17 April 2021
Erschienen in:Sleep
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:44
DOI:10.1093/sleep/zsab103
Seitenbereich:zsab103
Verlag:The American Academy of Sleep Medicine
ISSN:0161-8105
Status:veröffentlicht
Stichwörter:Intra-individual variability, Inter-individual variability, Sleep variability, Sleep stability, Circadian misalignment, Circadian disruption
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehr und Auswirkungen
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AI - Luftverkehr und Auswirkungen
DLR - Teilgebiet (Projekt, Vorhaben):L - Faktor Mensch
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Luft- und Raumfahrtmedizin > Schlaf und Humanfaktoren
Hinterlegt von: Sender, Alina
Hinterlegt am:25 Mai 2021 12:09
Letzte Änderung:24 Mai 2022 23:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.