elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction

Dvorakova, Klara und Heiden, Uta und van Wesemael, Bas (2021) Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction. Remote Sensing, 13 (9), Seiten 1-21. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs13091791. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://www.mdpi.com/2072-4292/13/9/1791

Kurzfassung

Pilot studies have demonstrated the potential of remote sensing for soil organic carbon (SOC) mapping in exposed croplands. However, the use of remote sensing for SOC prediction is often hindered by disturbing factors at the soil surface, such as photosynthetic active and non-photosynthetic active vegetation, variation in soil moisture or surface roughness. With the increasing amount of freely available satellite data, recent studies have focused on stabilizing the soil reflectance by building image composites. These composites tend to minimize the disturbing effects by applying sets of criteria. Here, we aim to develop a robust method that allows selecting Sentinel-2 (S-2) pixels with minimal influence of the following disturbing factors: crop residues, surface roughness and soil moisture. We selected all S-2 cloud-free images covering the Belgian Loam Belt from January 2019 to December 2020 (in total 36 images). We then built nine exposed soil composites based on four sets of criteria: (1) lowest Normalized Burn Ratio (NBR2), (2) Normalized Difference Vegetation Index (NDVI) < 0.25, (3–5) NDVI < 0.25 and NBR2 < threshold, (6) the ‘greening-up’ period of a crop and (7–9) the ‘greening-up’ period of a crop and NBR2 < threshold. The ‘greeningup’ period was selected based on the NDVI timeline, where ‘greening-up’ is considered as the last date of acquisition where the soil is exposed (NDVI < 0.25) before the crop develops (NDVI > 0.25). We then built a partial least square regression (PLSR) model with 10-fold cross-validation to estimate the SOC content based on 137 georeferenced calibration samples on the nine composites. We obtained non-satisfactory results (R² < 0.30, RMSE > 2.50 g C kg–1, and RPD < 1.4, n > 68) for all composites except for the composite in the ‘greening-up’ stage with a NBR2 < 0.07 (R² = 0.54 ± 0.12, RPD = 1.68 ± 0.45 and RMSE = 2.09 ± 0.39 g C kg–1, n = 49). Hence, the ‘greening-up’ method combined with a strict NBR2 threshold allows selecting the purest exposed soil pixels suitable for SOC prediction. The limit of this method might be its coverage of the total cropland area, which in a twoyear period reached 62%, compared to 95% coverage if only the NDVI threshold is applied.

elib-URL des Eintrags:https://elib.dlr.de/142158/
Dokumentart:Zeitschriftenbeitrag
Titel:Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dvorakova, KlaraGeorges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de LouvainNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Heiden, Utauta.heiden (at) dlr.dehttps://orcid.org/0000-0002-3865-1912NICHT SPEZIFIZIERT
van Wesemael, BasGeorges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de LouvainNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:4 Mai 2021
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:13
DOI:10.3390/rs13091791
Seitenbereich:Seiten 1-21
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:soil organic carbon mapping; multispectral data; Sentinel-2; exposed soil composite; greening-up; Normalized Burn Ratio 2
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Heiden, Dr.rer.nat. Uta
Hinterlegt am:07 Mai 2021 08:38
Letzte Änderung:13 Jul 2021 14:23

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.