Dvorakova, Klara und Heiden, Uta und van Wesemael, Bas (2021) Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction. Remote Sensing, 13 (9), Seiten 1-21. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs13091791. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://www.mdpi.com/2072-4292/13/9/1791
Kurzfassung
Pilot studies have demonstrated the potential of remote sensing for soil organic carbon (SOC) mapping in exposed croplands. However, the use of remote sensing for SOC prediction is often hindered by disturbing factors at the soil surface, such as photosynthetic active and non-photosynthetic active vegetation, variation in soil moisture or surface roughness. With the increasing amount of freely available satellite data, recent studies have focused on stabilizing the soil reflectance by building image composites. These composites tend to minimize the disturbing effects by applying sets of criteria. Here, we aim to develop a robust method that allows selecting Sentinel-2 (S-2) pixels with minimal influence of the following disturbing factors: crop residues, surface roughness and soil moisture. We selected all S-2 cloud-free images covering the Belgian Loam Belt from January 2019 to December 2020 (in total 36 images). We then built nine exposed soil composites based on four sets of criteria: (1) lowest Normalized Burn Ratio (NBR2), (2) Normalized Difference Vegetation Index (NDVI) < 0.25, (3–5) NDVI < 0.25 and NBR2 < threshold, (6) the ‘greening-up’ period of a crop and (7–9) the ‘greening-up’ period of a crop and NBR2 < threshold. The ‘greeningup’ period was selected based on the NDVI timeline, where ‘greening-up’ is considered as the last date of acquisition where the soil is exposed (NDVI < 0.25) before the crop develops (NDVI > 0.25). We then built a partial least square regression (PLSR) model with 10-fold cross-validation to estimate the SOC content based on 137 georeferenced calibration samples on the nine composites. We obtained non-satisfactory results (R² < 0.30, RMSE > 2.50 g C kg–1, and RPD < 1.4, n > 68) for all composites except for the composite in the ‘greening-up’ stage with a NBR2 < 0.07 (R² = 0.54 ± 0.12, RPD = 1.68 ± 0.45 and RMSE = 2.09 ± 0.39 g C kg–1, n = 49). Hence, the ‘greening-up’ method combined with a strict NBR2 threshold allows selecting the purest exposed soil pixels suitable for SOC prediction. The limit of this method might be its coverage of the total cropland area, which in a twoyear period reached 62%, compared to 95% coverage if only the NDVI threshold is applied.
elib-URL des Eintrags: | https://elib.dlr.de/142158/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Sentinel-2 Exposed Soil Composite for Soil Organic Carbon Prediction | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 4 Mai 2021 | ||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 13 | ||||||||||||||||
DOI: | 10.3390/rs13091791 | ||||||||||||||||
Seitenbereich: | Seiten 1-21 | ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | soil organic carbon mapping; multispectral data; Sentinel-2; exposed soil composite; greening-up; Normalized Burn Ratio 2 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Heiden, Dr.rer.nat. Uta | ||||||||||||||||
Hinterlegt am: | 07 Mai 2021 08:38 | ||||||||||||||||
Letzte Änderung: | 13 Jul 2021 14:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags