elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Situational Awareness of Large Infrastructures Using Remote Sensing: The Rome-Fiumicino Airport during the COVID-19 Lockdown

Pulella, Andrea und Sica, Francescopaolo (2021) Situational Awareness of Large Infrastructures Using Remote Sensing: The Rome-Fiumicino Airport during the COVID-19 Lockdown. Remote Sensing, 13 (2), Seite 299. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs13020299. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
8MB

Offizielle URL: https://www.mdpi.com/2072-4292/13/2/299

Kurzfassung

Situational awareness refers to the process of aggregating spatio-temporal variables and measurements from different sources, aiming to improve the semantic outcome. Remote Sensing satellites for Earth Observation acquire key variables that, when properly aggregated, can provide precious insights about the observed area. This article introduces a novel automatic system to monitor the activity levels and the operability of large infrastructures from satellite data. We integrate multiple data sources acquired by different spaceborne sensors, such as Sentinel-1 Synthetic Aperture Radar (SAR) time series, Sentinel-2 multispectral data, and Pleiades Very-High-Resolution (VHR) optical data. The proposed methodology exploits the synergy between these sensors for extracting, at the same time, quantitative and qualitative results. We focus on generating semantic results, providing situational awareness, and decision-ready insights. We developed this methodology for the COVID-19 Custom Script Contest, a remote hackathon funded by the European Space Agency (ESA) and the European Commission (EC), whose aim was to promote remote sensing techniques to monitor environmental factors consecutive to the spread of the Coronavirus disease. This work focuses on the Rome–Fiumicino International Airport case study, an environment significantly affected by the COVID-19 crisis. The resulting product is a unique description of the airport’s area utilization before and after the air traffic restrictions imposed between March and May 2020, during Italy’s first lockdown. Experimental results confirm that the proposed algorithm provides remarkable insights for supporting an effective decision-making process. We provide results about the airport’s operability by retrieving temporal changes at high spatial and temporal resolutions, together with the airplane count and localization for the same period in 2019 and 2020. On the one hand, we detected an evident change of the activity levels on those airport areas typically designated for passenger transportation, e.g., the one close to the gates. On the other hand, we observed an intensification of the activity levels over areas usually assigned to landside operations, e.g., the one close to the hangar. Analogously, the airplane count and localization have shown a redistribution of the airplanes over the whole airport. New parking slots have been identified as well as the areas that have been dismissed. Eventually, by combining the results from different sensors, we could affirm that different airport surface areas have changed their functionality and give a non-expert interpretation about areas’ usage.

elib-URL des Eintrags:https://elib.dlr.de/141534/
Dokumentart:Zeitschriftenbeitrag
Titel:Situational Awareness of Large Infrastructures Using Remote Sensing: The Rome-Fiumicino Airport during the COVID-19 Lockdown
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Pulella, AndreaAndrea.Pulella (at) dlr.dehttps://orcid.org/0000-0001-6295-617XNICHT SPEZIFIZIERT
Sica, FrancescopaoloFrancescopaolo.Sica (at) dlr.dehttps://orcid.org/0000-0003-1593-1492NICHT SPEZIFIZIERT
Datum:16 Januar 2021
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:13
DOI:10.3390/rs13020299
Seitenbereich:Seite 299
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
Name der Reihe:MDPI Remote Sensing Data Interpretation and Validation
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:situational awareness; COVID-19; activity monitoring; Synthetic Aperture Radar; Sentinel-1; Sentinel-2; copernicus; pleiades.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt TanDEM-X (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme
Hinterlegt von: Pulella, M.Eng. Andrea
Hinterlegt am:26 Mär 2021 16:13
Letzte Änderung:24 Mai 2022 23:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.