elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Estimation of Surface NO2 Concentrations over Germany from TROPOMI Satellite Observations Using a Machine Learning Method

Chan, Ka Lok und Khorsandi, Ehsan und Liu, Song und Baier, Frank und Valks, Pieter (2021) Estimation of Surface NO2 Concentrations over Germany from TROPOMI Satellite Observations Using a Machine Learning Method. Remote Sensing, 13 (5), Seiten 1-23. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs13050969. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
13MB

Offizielle URL: https://www.mdpi.com/2072-4292/13/5/969

Kurzfassung

In this paper, we present the estimation of surface NO2 concentrations over Germany using a machine learning approach. TROPOMI satellite observations of tropospheric NO2 vertical column densities (VCDs) and several meteorological parameters are used to train the neural network model for the prediction of surface NO2 concentrations. The neural network model is validated against ground-based in situ air quality monitoring network measurements and regional chemical transport model (CTM) simulations. Neural network estimation of surface NO2 concentrations show good agreement with in situ monitor data with Pearson correlation coefficient (R) of 0.80. The results also show that the machine learning approach is performing better than regional CTM simulations in predicting surface NO2 concentrations. We also performed a sensitivity analysis for each input parameter of the neural network model. The validated neural network model is then used to estimate surface NO2 concentrations over Germany from 2018 to 2020. Estimated surface NO2 concentrations are used to investigate the spatio-temporal characteristics, such as seasonal and weekly variations of NO2 in Germany. The estimated surface NO2 concentrations provide comprehensive information of NO2 spatial distribution which is very useful for exposure estimation. We estimated the annual average NO2 exposure for 2018, 2019 and 2020 is 15.53, 15.24 and 13.27 µµg/m3, respectively. While the annual average NO2 concentration of 2018, 2019 and 2020 is only 12.79, 12.60 and 11.15 µµg/m3. In addition, we used the surface NO2 data set to investigate the impacts of the coronavirus disease 2019 (COVID-19) pandemic on ambient NO2 levels in Germany. In general, 10–30 lower surface NO2 concentrations are observed in 2020 compared to 2018 and 2019, indicating the significant impacts of a series of restriction measures to reduce the spread of the virus.

elib-URL des Eintrags:https://elib.dlr.de/141411/
Dokumentart:Zeitschriftenbeitrag
Titel:Estimation of Surface NO2 Concentrations over Germany from TROPOMI Satellite Observations Using a Machine Learning Method
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Chan, Ka LokKa.Chan (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Khorsandi, EhsanEhsan.Khorsandi (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Liu, SongSong.Liu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Baier, FrankFrank.Baier (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Valks, PieterPieter.Valks (at) dlr.dehttps://orcid.org/0000-0002-2846-7863NICHT SPEZIFIZIERT
Datum:4 März 2021
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:13
DOI:10.3390/rs13050969
Seitenbereich:Seiten 1-23
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:NO2; surface concentration; TROPOMI; satellite; Germany; machine learning; exposure; COVID-19
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung, Vorhaben Spektroskopische Verfahren in der Fernerkundung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Atmosphärenprozessoren
Deutsches Fernerkundungsdatenzentrum > Atmosphäre
Hinterlegt von: Chan, Ka Lok
Hinterlegt am:23 Mär 2021 10:33
Letzte Änderung:28 Mär 2023 23:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.