Oertel, Annika und Sprenger, Michael und Joos, Hanna und Boettcher, Maxi und Konow, Heike und Hagen, Martin und Wernli, Heini (2021) Observations and simulation of intense convection embedded in a warm conveyor belt - how ambient vertical wind shear determines the dynamical impact. Weather and Climate Dynamics, 2 (1), Seiten 89-110. Copernicus Publications. doi: 10.5194/wcd-2-89-2021. ISSN 2698-4016.
PDF
- Verlagsversion (veröffentlichte Fassung)
11MB |
Offizielle URL: http://dx.doi.org/10.5194/wcd-2-89-2021
Kurzfassung
Warm conveyor belts (WCBs) are dynamically important, strongly ascending and mostly stratiform cloud-forming airstreams in extratropical cyclones. Despite the predominantly stratiform character of the WCB's large-scale cloud band, convective clouds can be embedded in it. This embedded convection leads to a heterogeneously structured cloud band with locally enhanced hydrometeor content, intense surface precipitation and substantial amounts of graupel in the middle troposphere. Recent studies showed that embedded convection forms dynamically relevant quasi-horizontal potential vorticity (PV) dipoles in the upper troposphere. Thereby one pole can reach strongly negative PV values associated with inertial or symmetric instability near the upper-level PV waveguide, where it can interact with and modify the upper-level jet. This study analyzes the characteristics of embedded convection in the WCB of cyclone Sanchez based on WCB online trajectories from a convection-permitting simulation and airborne radar observations during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) field campaign (intense observation periods, IOPs, 10 and 11). In the first part, we present the radar reflectivity structure of the WCB and corroborate its heterogeneous cloud structure and the occurrence of embedded convection. Radar observations in three different sub-regions of the WCB cloud band reveal the differing intensity of its embedded convection, which is qualitatively confirmed by the ascent rates of the online WCB trajectories. The detailed ascent behavior of the WCB trajectories reveals that very intense convection with ascent rates of 600 hPa in 30-60 min occurs, in addition to comparatively moderate convection with slower ascent velocities as reported in previous case studies. In the second part of this study, a systematic Lagrangian composite analysis based on online trajectories for two sub-categories of WCB-embedded convection - moderate and intense convection - is performed. Composites of the cloud and precipitation structure confirm the large influence of embedded convection: intense convection produces very intense local surface precipitation with peak values exceeding 6 mm in 15 min and large amounts of graupel of up to 2.8 g kg-1 in the middle troposphere (compared to 3.9 mm and 1.0 g kg-1 for the moderate convective WCB sub-category). In the upper troposphere, both convective WCB trajectory sub-categories form a small-scale and weak PV dipole, with one pole reaching weakly negative PV values. However, for this WCB case study - in contrast to previous case studies reporting convective PV dipoles in the WCB ascent region with the negative PV pole near the upper-level jet - the negative PV pole is located east of the convective ascent region, i.e., away from the upper-level jet. Moreover, the PV dipole formed by the intense convective WCB trajectories is weaker and has a smaller horizontal and vertical extent compared to a previous NAWDEX case study of WCB-embedded convection, despite faster ascent rates in this case. The absence of a strong upper-level jet and the weak vertical shear of the ambient wind in cyclone Sanchez are accountable for the weak diabatic PV modification in the upper troposphere. This implies that the strength of embedded convection alone is not a reliable measure for the effect of embedded convection on upper-level PV modification and its impact on the upper-level jet. Instead, the profile of vertical wind shear and the alignment of embedded convection with a strong upper-level jet play a key role for the formation of coherent negative PV features near the jet. Finally, these results highlight the large case-to-case variability of embedded convection not only in terms of frequency and intensity of embedded convection in WCBs but also in terms of its dynamical implications.
elib-URL des Eintrags: | https://elib.dlr.de/141254/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Observations and simulation of intense convection embedded in a warm conveyor belt - how ambient vertical wind shear determines the dynamical impact | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 2 Februar 2021 | ||||||||||||||||||||||||||||||||
Erschienen in: | Weather and Climate Dynamics | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 2 | ||||||||||||||||||||||||||||||||
DOI: | 10.5194/wcd-2-89-2021 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 89-110 | ||||||||||||||||||||||||||||||||
Verlag: | Copernicus Publications | ||||||||||||||||||||||||||||||||
ISSN: | 2698-4016 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Convection, low pressure system, aircraft observations, radar | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Atmosphären- und Klimaforschung | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Lidar | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Hagen, Dr.rer.nat. Martin | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 08 Mär 2021 08:24 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 19 Dez 2023 04:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags