Sanaei, Rasoul und Pinto, Brian Alphonse und Gollnick, Volker (2021) Toward ATM resiliency: A Deep CNN to predict number of delayed flights and ATFM delay. Aerospace. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/aerospace8020028. ISSN 2226-4310.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The European Air Traffic Management Network (EATMN) is comprised of various stakeholders and actors. Accordingly, the operations within EATMN are planned up to six months ahead of target date (tactical phase). However, stochastic events and the built-in operational flexibility (robustness), along with other factors, result in demand and capacity imbalances that lead to delayed flights. The size of the EATMN and its complexity challenge the prediction of the total network delay using analytical methods or optimization approaches. We face this challenge by proposing a Deep Convolutional Neural Network (DCNN), which takes capacity regulations as the input. DCNN architecture successfully improves the prediction results by 50 percent (compared to random forest as the baseline model). In fact, the trained model on 2016 and 2017 data is able to predict 2018 with a mean absolute percentage error of 22% and 14% for the delay and delayed traffic, respectively. This study presents a method to provide more accurate situational awareness, which is a must for the topic of network resiliency.
elib-URL des Eintrags: | https://elib.dlr.de/140598/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Toward ATM resiliency: A Deep CNN to predict number of delayed flights and ATFM delay | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 25 Januar 2021 | ||||||||||||||||
Erschienen in: | Aerospace | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.3390/aerospace8020028 | ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 2226-4310 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | ATFM delay; CNN; Resilience; Capacity Regulations | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Luftverkehrsmanagement und Flugbetrieb | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L AO - Air Traffic Management and Operation | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Luftverkehrskonzepte und Betrieb (alt) | ||||||||||||||||
Standort: | Hamburg | ||||||||||||||||
Institute & Einrichtungen: | Lufttransportsysteme > Luftverkehrsinfrastrukturen und Prozesse | ||||||||||||||||
Hinterlegt von: | Sanaei, Rasoul | ||||||||||||||||
Hinterlegt am: | 22 Jan 2021 11:10 | ||||||||||||||||
Letzte Änderung: | 05 Dez 2023 09:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags