elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Lunar megaregolith mixing by impacts: the spatial diffusion of surface material and its implications for sample interpretation

Liu, Tiantian und Michael, Greg und Zuschneid, Wilhelm und Wünnemann, Kai und Oberst, Jürgen (2020) Lunar megaregolith mixing by impacts: the spatial diffusion of surface material and its implications for sample interpretation. Icarus: International Journal of Solar System Studies. Elsevier. doi: 10.1016/j.icarus.2020.114206. ISSN 0019-1035.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S001910352030539X

Kurzfassung

The source of the non-mare component in the lunar mare soil samples is still an open question. A spatially-resolved numerical model tracing the diffusion of non-mare material was developed by means of the Monte Carlo method to study this issue in more detail. The vertically- and laterally-transported non-mare components are recorded separately to assess their concentration on the surface. We find a general higher efficiency of lateral transport than of vertical transport, but the opposite may occur within small zones of interest. The overall (background) distribution of non-mare component is estimated by averaging out regional variations of material composition caused by local impact mixing. We find that almost all the mare surface is mixed with non-mare material. If most of the mare regions have filled basaltic material about 500 m in thickness since the formation of basins, the average non-mare fraction in the top 5 m is about 0.1. The abundance of the non-mare component decreases with increasing distance from the mare-highland boundary, but the slope of the distance-dependence is shallower within ~100 km of the boundary than further away. By comparing the background composition derived from our model with the geochemical analysis and geological interpretation of the lunar mare soil samples, we infer the most plausible geologic processes that have significantly altered the material composition at the sampling sites: for the Apollo 15 and 17 mare soil samples, the large fraction of non-mare material is likely to have resulted from the downslope slumping or lateral transport of the nearby massifs. The Apollo 12 sampling site that is located interior domains of Oceanus Procellarum has a component of Copernicus ejecta. A mixing of both Copernicus ejecta and excavated local underlying material by high-velocity ejecta has altered the composition at the surface. The non-mare material contained in the Apollo 11 and Luna 24 mare soil samples could have been built up gradually by both long-time lateral and vertical mixing. The mare deposit at the Luna 16 landing site is likely to be relatively thin resulting in the abundant vertically transported non-mare component. Since the history of the lunar volcanic eruptions - deposit thicknesses, flux curves and onset of activity - has not been well constrained, we make simple estimates with the first-order accuracy. In addition, it was found that the vertically transported non-mare abundance in the top surface is influenced by both the cessation time of the major mare fillings and the total amount of mare deposit; the laterally-transported non-mare abundance in the top surface is mainly dependent on the cessation time of the major mare fillings. The peak time of eruption would not change the abundance of both the laterally and vertically transported non-mare component.

elib-URL des Eintrags:https://elib.dlr.de/140457/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:Bisher nur online erschienen.
Titel:Lunar megaregolith mixing by impacts: the spatial diffusion of surface material and its implications for sample interpretation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Liu, TiantianTechnische Universität BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Michael, GregFreie Universität BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zuschneid, WilhelmFreie Universität BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wünnemann, KaiMuseum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung , Berlin, Germany; FU BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Oberst, Jürgenjuergen.oberst (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:10 November 2020
Erschienen in:Icarus: International Journal of Solar System Studies
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1016/j.icarus.2020.114206
Verlag:Elsevier
ISSN:0019-1035
Status:veröffentlicht
Stichwörter:Moon, surface Regoliths Impact processes Cratering
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Explorationsstudien (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetengeodäsie
Hinterlegt von: Lüdicke, Fabian
Hinterlegt am:15 Jan 2021 07:24
Letzte Änderung:15 Jan 2021 07:24

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.