Zhu, Songyan und Xu, Jian und Yu, Chao und Wang, Yapeng und Efremenko, Dmitry S. und Li, Xiaoying und Sui, Zhengwei (2021) DecSolNet: A noise resistant missing information recovery framework for daily satellite NO2 columns. Atmospheric Environment, 246, Seite 118143. Elsevier. doi: 10.1016/j.atmosenv.2020.118143. ISSN 1352-2310.
PDF
- Nur DLR-intern zugänglich
- Postprintversion (akzeptierte Manuskriptversion)
6MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S1352231020308736
Kurzfassung
A novel statistical method (hereafter referred to as DecSolNet) for reconstructing satellite NO2 columns is introduced. The method has been developed and evaluated by comparing its performance with four benchmark models in three scenarios. When the amount of satellite data is limited, DecSolNet outperforms the benchmark models and its performance does not degrade with noisy inputs. The implementation of DecSolNet consists of: (1) feature extraction, sequential data decomposition in both temporal and frequency domains; (2) NO2 columns reconstruction by training a deep neural network. In three cross-validations, the averaged R2 score of DecSolNet reaches 0.9, which is better than that of the most benchmark models. The multi-layer perceptron (MLP) has a higher R2 score, but it degrades greatly with noisy inputs, while the performance of DecSolNet remains robust with an R2 of ̃0.8. The bias of DecSolNet is small with an average of 1.61 μg/m3. In addition, DecSolNet is a reliable learning machine, the averaged loss and standard deviation are 0.42 μg/m3 and 0.04 μg/m3, respectively.
elib-URL des Eintrags: | https://elib.dlr.de/140386/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | DecSolNet: A noise resistant missing information recovery framework for daily satellite NO2 columns | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 1 Februar 2021 | ||||||||||||||||||||||||||||||||
Erschienen in: | Atmospheric Environment | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 246 | ||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.atmosenv.2020.118143 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seite 118143 | ||||||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||||||
ISSN: | 1352-2310 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | NO2 columns, Remote sensing, Data reconstruction, Time series decomposition, EMD, Deep learning | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Klimarelevanz von atmosphärischen Spurengasen, Aerosolen und Wolken | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Xu, Dr.-Ing. Jian | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 14 Jan 2021 10:09 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Mai 2022 23:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags