elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Water Mapping Using Synthetic Aperture Radar Data and Convolutional Neural Networks

Helleis, Max (2021) Water Mapping Using Synthetic Aperture Radar Data and Convolutional Neural Networks. Masterarbeit, Technische Universität München.

[img] PDF - Nur DLR-intern zugänglich
17MB

Kurzfassung

Water mapping to derive flood parameters using Synthetic Aperture Radar data is an estab-lished procedure in emergency situations. In this study, the effectiveness of convolutionalneural networks (AlbuNet-34) for the purpose of water mapping using Sentinel-1 data is in-vestigated and compared to the performance of a state-of-the-art rule-based processor forwater mapping. This comparison is made using a reference dataset containing 67 globallydistributed Sentinel-1 scenes and the corresponding ground truth water masks derived fromSentinel-2 data to evaluate the performance of the classifiers on a global scale in variousenvironmental conditions. Various semi-random undersampling strategies for balancing thedataset are explored and the effect of the sample size on the performance of the models is in-vestigated. The cross entropy loss is compared to the region-based Lovász loss function andvarious data augmentation methods (flip, zoom, intensity variation, rotation, speckle simula-tion) are assessed. Furthermore, the impact of using single polarized VV or VH data and dualpolarized VV-VH data on the segmentation capabilities of AlbuNet-34 is evaluated. Finally,the concept of atrous spatial pyramid pooling used in a DeepLabV3+ model with a ResNet-50 encoder is assessed with respect to segmentation performance. The IoU scores on theglobal test set of 14 Sentinel-1 scenes vary by 0.11, depending on the sampling strategy, andthe Lovász loss increases the test IoU score by 0.01 compared to the cross entropy loss.Left-right flip and intensity augmentation improve the performance of the model, zooming androtation show only minor impact and speckle simulation decreases the performance. Themodel trained using VV-VH polarized data outperforms the rule-based flood processor andincreases accuracy by 0.01, recall by 0.03, precision by 0.04, F1 by 0.06, Kappa by 0.06 and IoU by 0.06. DeepLabV3+ yields results comparable to AlbuNet-34.

elib-URL des Eintrags:https://elib.dlr.de/140331/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Water Mapping Using Synthetic Aperture Radar Data and Convolutional Neural Networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Helleis, Maxmax.helleis (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2021
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:89
Status:veröffentlicht
Stichwörter:Convolutional Neural Networks, Synthetic Aperture Radar, Flood, Sentinel
Institution:Technische Universität München
Abteilung:Fakultät für Luftfahrt, Raumfahrt und Geodäsie
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Wieland, Dr Marc
Hinterlegt am:14 Jan 2021 09:55
Letzte Änderung:20 Dez 2021 12:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.