Efremenko, Dmitry und Jain, Himani und Xu, Jian (2020) Two machine learning based schemes for solving direct and inverse problems of radiative transfer theory. In: 30th International Conference on Computer Graphics and Machine Vision, GraphiCon 2020, 2744, Seiten 1-12. CEUR Workshop Proceedings. 30th International Conference on Computer Graphics and Machine Vision, 2020-09-22 - 2020-09-25, Saint Petersburg, Russia ONLINE. doi: 10.51130/graphicon-2020-2-3-45. ISSN 1613-0073.
PDF
804kB |
Offizielle URL: http://ceur-ws.org/Vol-2744/paper45.pdf
Kurzfassung
Artificial neural networks (ANNs) are used to substitute computationally expensive radiative transfer models (RTMs) and inverse operators (IO) for retrieving optical parameters of the medium. However, the direct parametrization of RTMs and IOs by means of ANNs has certain drawbacks, such as loss of generality, computations of huge training datasets, robustness issues etc. This paper provides an analysis of different ANN-related methods, based on our results and those published by other authors. In particular, two techniques are pro-posed. In the first method, the ANN substitutes the eigenvalue solver in the discrete ordinate RTM, thereby reducing the computational time. Unlike classical RTM parametrization schemes based on ANN, in this method the resulting ANN can be used for arbitrary geometry and layer optical thicknesses. In the second method, the IO is trained by using the real measurements (preprocessed Level-2TROPOMI data) to improve the stability of the inverse operator. This method provides robust results even without applying the Tikhonov regularization method.
elib-URL des Eintrags: | https://elib.dlr.de/140084/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Two machine learning based schemes for solving direct and inverse problems of radiative transfer theory | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2020 | ||||||||||||||||
Erschienen in: | 30th International Conference on Computer Graphics and Machine Vision, GraphiCon 2020 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 2744 | ||||||||||||||||
DOI: | 10.51130/graphicon-2020-2-3-45 | ||||||||||||||||
Seitenbereich: | Seiten 1-12 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | CEUR Workshop Proceedings | ||||||||||||||||
ISSN: | 1613-0073 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Radiative Transfer, Machine Learning, Trace gas retrieval | ||||||||||||||||
Veranstaltungstitel: | 30th International Conference on Computer Graphics and Machine Vision | ||||||||||||||||
Veranstaltungsort: | Saint Petersburg, Russia ONLINE | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 22 September 2020 | ||||||||||||||||
Veranstaltungsende: | 25 September 2020 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Klimarelevanz von atmosphärischen Spurengasen, Aerosolen und Wolken | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||
Hinterlegt von: | Xu, Dr.-Ing. Jian | ||||||||||||||||
Hinterlegt am: | 11 Jan 2021 10:13 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags