elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Potential of Recurrence Metrics from Sentinel-1 Time Series for Deforestation Mapping

Cremer, Felix und Urbazaev, Mikhail und Cortés, José und Truckenbrodt, John und Schmullius, Christiane C. und Thiel, Christian (2020) Potential of Recurrence Metrics from Sentinel-1 Time Series for Deforestation Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Seiten 5233-5240. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2020.3019333. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Kurzfassung

The REDD+ framework requires accurate estimates of deforestation. These are derived by ground measurements supported by methods based on remote sensing data to automatically detect and delineate deforestations over large areas. In particular, in the tropics, optical data is seldom available due to cloud cover. As synthetic aperture radar (SAR) data overcomes this limitation, we performed a separability analysis of two statistical metrics based on the Sentinel-1 SAR backscatter over forested and deforested areas. We compared the range between the 5th and 95th temporal percentiles (PRange) and the recurrence quantification analysis (RQA) Trend metric. Unlike the PRange, the RQA Trend considers the temporal order of the SAR data acquisitions, thus contrasting between dropping backscatter signals and yearly seasonalities. This enables the estimation of the timing of deforestation events. We assessed the impact of polarization, acquisition orbit, and despeckling on the separability between forested and deforested areas and between different deforestation timings for two test sites in Mexico. We found that the choice of the orbit impacts the detectability of deforestation. In all cases, VH data showed a higher separability between forest and deforestations than VV data. The PRange slightly outperformed RQA Trend in the separation between forest and deforestation. However, the RQA Trend exceeded the PRange in the separation between different deforestation timings. In this study, C-Band backscatter data was used, although it is commonly not considered as the most suitable SAR dataset for forestry applications. Nevertheless, our approach shows the potential of dense C-Band backscatter time series to support the REDD+ framework

elib-URL des Eintrags:https://elib.dlr.de/139896/
Dokumentart:Zeitschriftenbeitrag
Titel:Potential of Recurrence Metrics from Sentinel-1 Time Series for Deforestation Mapping
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cremer, FelixFelix.Cremer (at) dlr.dehttps://orcid.org/0000-0001-8659-4361NICHT SPEZIFIZIERT
Urbazaev, MikhailFriedrich-Schiller-Universität Jenahttps://orcid.org/0000-0002-0327-6278NICHT SPEZIFIZIERT
Cortés, JoséFriedrich-Schiller-Universität JenaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Truckenbrodt, JohnJohn.Truckenbrodt (at) dlr.dehttps://orcid.org/0000-0002-7259-101XNICHT SPEZIFIZIERT
Schmullius, Christiane C.Friedrich-Schiller-Universität JenaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Thiel, ChristianChristian.Thiel (at) dlr.dehttps://orcid.org/0000-0001-5144-8145NICHT SPEZIFIZIERT
Datum:26 September 2020
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/JSTARS.2020.3019333
Seitenbereich:Seiten 5233-5240
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Forestry, radar remote sensing, synthetic aperture radar, time series analysis
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):R - keine Zuordnung
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften > Bürgerwissenschaften
Hinterlegt von: Thiel, Christian
Hinterlegt am:04 Jan 2021 12:36
Letzte Änderung:24 Okt 2023 12:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.