Hänsch, Ronny und Hellwich, Olaf (2020) Fusion of Multispectral LiDAR, Hyperspectral, and RGB Data for Urban Land Cover Classification. IEEE Geoscience and Remote Sensing Letters, Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/lgrs.2020.2972955. ISSN 1545-598X.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
With the increasing importance of monitoring urban areas, the question arises which sensors are best suited to solve the corresponding challenges. This letter proposes novel node tests within the random forest (RF) framework, which allows them to apply them to optical RGB images, hyperspectral images, and light detection and ranging (LiDAR) data, either individually or in combination. This does not only allow to derive accurate classification results for many relevant urban classes without preprocessing or feature extraction but also provides insights into which sensor offers the most meaningful data to solve the given classification task. The achieved results on a public benchmark data set are superior to results obtained by deep learning approaches despite being based on only a fraction of training samples.
elib-URL des Eintrags: | https://elib.dlr.de/139675/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Fusion of Multispectral LiDAR, Hyperspectral, and RGB Data for Urban Land Cover Classification | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 31 Mai 2020 | ||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/lgrs.2020.2972955 | ||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1545-598X | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Classification, data fusion, HIS, multispectral light detection and ranging (LiDAR), random forest (RF) | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Flugzeug-SAR | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||
Hinterlegt von: | Hänsch, Ronny | ||||||||||||
Hinterlegt am: | 16 Dez 2020 10:38 | ||||||||||||
Letzte Änderung: | 24 Okt 2023 12:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags