Papadaki, Alexandra und Hänsch, Ronny (2020) Match or No Match: Keypoint Filtering based on Matching Probability. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020, Seiten 4371-4378. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020-06-14 - 2020-06-19, virtual. doi: 10.1109/CVPRW50498.2020.00515. ISBN 978-1-7281-9360-1. ISSN 2160-7508.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Keypoints that do not meet the needs of a given application are a very common accuracy and efficiency bottleneck in many computer vision tasks, including keypoint matching and 3D reconstruction. Many computer vision and machine learning methods have dealt with this issue, trying to improve keypoint detection or the matching process. We introduce an algorithm that filters detected keypoints before the matching is even attempted, by predicting the probability of each point to be successfully matched. This is realised using a flexible and time efficient Random Forest classifier. Experiments on stereo and multi-view datasets of building facades show that the proposed method decreases the computational cost of a subsequent keypoint matching and 3D reconstruction, by correctly filtering 50% of the points that wouldn't be matched while preserving 73% of the matchable keypoints. This enables a subsequent processing with minimal mismatches, provides reliable matches, and point clouds. The presented filtering leads to an improved 3D reconstruction of the scene, even in the hard case of repetitive patterns and vegetation.
elib-URL des Eintrags: | https://elib.dlr.de/139665/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Match or No Match: Keypoint Filtering based on Matching Probability | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 14 Juni 2020 | ||||||||||||
Erschienen in: | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/CVPRW50498.2020.00515 | ||||||||||||
Seitenbereich: | Seiten 4371-4378 | ||||||||||||
ISSN: | 2160-7508 | ||||||||||||
ISBN: | 978-1-7281-9360-1 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Keypoint matching, image matching, machine learning, structure from motion, 3D reconstruction | ||||||||||||
Veranstaltungstitel: | IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) | ||||||||||||
Veranstaltungsort: | virtual | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 14 Juni 2020 | ||||||||||||
Veranstaltungsende: | 19 Juni 2020 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Flugzeug-SAR | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||
Hinterlegt von: | Hänsch, Ronny | ||||||||||||
Hinterlegt am: | 16 Dez 2020 10:16 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags