Krukowski, Simon und Hecking, Tobias (2020) Using Link Clustering to Detect Influential Spreaders. In: 9th International Conference on Complex Networks and Their Application, COMPLEX NETWORKS 2020. Springer Nature. 9th International Conference on Complex Networks and their Applications, 2020-12-01 - 2020-12-03, Madrid, Spanien. doi: 10.1007/978-3-030-65347-7_34. ISBN 978-3-030-65346-0. ISSN 1860-949X.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Spreading processes are increasingly analysed in the context of complex networks, for example in epidemics research, information dissemination or rumors. In these contexts, the effect of structural properties that facilitate or decelerate spreading processes are of high interest, since this allows insights into the extent to which those processes are controllable and predictable. In social networks, actors usually participate in different densely connected social groups that emerge from various social contexts, such as workplace, interests, etc. In this paper, it is examined if the number of groups an actor connects to can be used as a predictor for its capability to spread information effectively. The social contexts (i.e. groups) a node participates in are determined by the Link Communities approach by Ahn et al. (2010). The results are contrasted to previous findings of structural node properties based on the k-shell index of nodes (Kitsak et al. 2010) by applying both methods on artificially generated and real-world networks. They show that the approach is comparable to existing ones using structural node properties as a predictor, yet no clear evidence is found indicating that one or the other approach leads to better predictions in all investigated networks.
elib-URL des Eintrags: | https://elib.dlr.de/139522/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Using Link Clustering to Detect Influential Spreaders | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2020 | ||||||||||||
Erschienen in: | 9th International Conference on Complex Networks and Their Application, COMPLEX NETWORKS 2020 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1007/978-3-030-65347-7_34 | ||||||||||||
Verlag: | Springer Nature | ||||||||||||
ISSN: | 1860-949X | ||||||||||||
ISBN: | 978-3-030-65346-0 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Link clustering, Spreading processes, Information diffusion | ||||||||||||
Veranstaltungstitel: | 9th International Conference on Complex Networks and their Applications | ||||||||||||
Veranstaltungsort: | Madrid, Spanien | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 1 Dezember 2020 | ||||||||||||
Veranstaltungsende: | 3 Dezember 2020 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben SISTEC (alt) | ||||||||||||
Standort: | Köln-Porz | ||||||||||||
Institute & Einrichtungen: | Institut für Simulations- und Softwaretechnik > Verteilte Systeme und Komponentensoftware Institut für Softwaretechnologie | ||||||||||||
Hinterlegt von: | Hecking, Dr. Tobias | ||||||||||||
Hinterlegt am: | 14 Dez 2020 09:18 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags