elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Flexible Approach To Parameter Estimation Of Physics-Based Battery Models With Bayesian Optimization

Kuhn, Yannick und Horstmann, Birger und Latz, Arnulf (2020) A Flexible Approach To Parameter Estimation Of Physics-Based Battery Models With Bayesian Optimization. Oxford Battery Modeling Symposium | OBMS 2020, 2020-03-16 - 2020-03-17, Oxford, Großbritannien / Virtuell.

[img] PDF - Nur DLR-intern zugänglich
145kB

Kurzfassung

A wealth of measurement techniques are available for determining transport or thermodynamic properties of batteries. Some examples are GITT, pulse experiments or least squares with impedance spectroscopy, which are excellent at automatically retrieving a subset of model parameters with relatively low computational cost. They achieve this at the cost of accuracy and compatibility, since each employs a different approximation in order to obtain analytic expressions. So it remains a challenge to study the interactions and effects of multiple model parameters at once, since various measurement techniques would need to be combined intoone so-called cost functional. This cost functional is a function of the measurement data and the battery model parameters and can be used to determine the parameters that best describe the data. The automated computation for this usually leverages the derivative/gradient of the cost functional by the parameters. Beyond some degree of complexity, this gradient would become intractable or unfeasible to analytically calculate, making the computation expensive and/or numerically unstable.We want to eliminate the need for those gradients. The goal is to enable automated material screening with flexible selection of various measurements. Our approach uses the existing specialized techniques as a starting point and refines their results by performing simulations with randomized parameters and comparing them with allavailable measurements. This Monte Carlo approach is made computationally feasible by utilizing Bayesian Optimization for sparse sampling and preprocessing the measurements into intuitive features. The latter also enables us to use measurements that are most often fitted by hand, e.g. discharge curves. Additionally, we make use of a single particlemodel with electrolyte from and/or PyBaMM to make the simulations as efficientas possible, but any 1D+1D model can be used thanks to the sparse sampling approach.

elib-URL des Eintrags:https://elib.dlr.de/139357/
Dokumentart:Konferenzbeitrag (Poster)
Titel:A Flexible Approach To Parameter Estimation Of Physics-Based Battery Models With Bayesian Optimization
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kuhn, Yannickyannick.kuhn (at) dlr.dehttps://orcid.org/0000-0002-9019-2290NICHT SPEZIFIZIERT
Horstmann, Birgerbirger.horstmann (at) dlr.dehttps://orcid.org/0000-0002-1500-0578NICHT SPEZIFIZIERT
Latz, Arnulfarnulf.latz (at) dlr.dehttps://orcid.org/0000-0003-1449-8172NICHT SPEZIFIZIERT
Datum:2020
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Parameter Optimization, Bayesian Optimization
Veranstaltungstitel:Oxford Battery Modeling Symposium | OBMS 2020
Veranstaltungsort:Oxford, Großbritannien / Virtuell
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:16 März 2020
Veranstaltungsende:17 März 2020
HGF - Forschungsbereich:Energie
HGF - Programm:Speicher und vernetzte Infrastrukturen
HGF - Programmthema:Elektrochemische Energiespeicher
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Prozesse (Batterien) (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Computergestützte Elektrochemie
Hinterlegt von: Bolay, Linda
Hinterlegt am:11 Dez 2020 16:39
Letzte Änderung:24 Apr 2024 20:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.