elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Water and hydropower reservoirs: High temporal resolution time series derived from MODIS data to characterize seasonality and variability

Klein, Igor und Mayr, Stefan und Gessner, Ursula und Hirner, Andreas und Kuenzer, Claudia (2020) Water and hydropower reservoirs: High temporal resolution time series derived from MODIS data to characterize seasonality and variability. Remote Sensing of Environment, 253, Seiten 1-20. Elsevier. doi: 10.1016/j.rse.2020.112207. ISSN 0034-4257.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0034425720305800?via%3Dihub

Kurzfassung

Remote sensing time series offer the possibility to monitor surface water at dense temporal intervals. Open data archives as well as developments in cloud computing are the main drivers towards and increased availability of raw data allowing for the extraction of detailed information on water bodies such as natural lakes and artificial reservoirs. At the same time, changes in precipitation patterns, increasing frequency and intensity of droughts, intensification of human water use, and regulatory upstream measurements affect water resources around the world today. With regard to water availability and supply-demand balance, artificial water reservoirs have become most important elements e.g. for hydropower, irrigated agriculture, flood control, as well as for domestic and industrial water use. Nevertheless, publicly accessible information on reservoirs is still not harmonized and available at global scale. Therefore, it is more essential than ever to acquire detailed knowledge about spatio-temporal variability of water resources - especially reservoirs - and the drivers of their dynamics. In this study, we analyze daily water extent time series of the 1267 largest reservoirs worldwide based on the existing DLR-DFD Global WaterPack product derived from MODIS data (Klein et al., 2017). The study aims to present an experimental way of spatio-temporal variability analysis by implementing the TIMESAT software which is usually used for vegetation analyses. In our experimental approach we derive information on the timing when the open surface water areas of reservoirs increase and decrease by identifying start date, end date and duration of such reservoir cycles as well as timing of maximum surface water extent (hydro-metrics). For four selected reservoirs, these hydro-metrics derived from surface water extent are compared with hydro-metrics derived from in-situ water level measurements or altimetry datasets and are discussed in more detail. Based on the presented examples we demonstrate the potential of high temporal resolution surface water extent data and spatio-temporal variability analyses with TIMESAT for future applications supporting the understanding of reservoir variability as a result of water management and hydroclimatic variability.

elib-URL des Eintrags:https://elib.dlr.de/138513/
Dokumentart:Zeitschriftenbeitrag
Titel:Water and hydropower reservoirs: High temporal resolution time series derived from MODIS data to characterize seasonality and variability
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Klein, IgorIgor.Klein (at) dlr.dehttps://orcid.org/0000-0003-0113-8637NICHT SPEZIFIZIERT
Mayr, Stefanstefan.mayr (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gessner, Ursulaursula.gessner (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hirner, AndreasAndreas.Hirner (at) dlr.dehttps://orcid.org/0009-0007-5473-9424NICHT SPEZIFIZIERT
Kuenzer, Claudiaclaudia.kuenzer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:5 Dezember 2020
Erschienen in:Remote Sensing of Environment
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:253
DOI:10.1016/j.rse.2020.112207
Seitenbereich:Seiten 1-20
Verlag:Elsevier
ISSN:0034-4257
Status:veröffentlicht
Stichwörter:Reservoirs seasonality; Daily temporal resolution; MODIS; TIMESAT; Surface water area; Intra-annual variability
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Klein, Igor
Hinterlegt am:08 Dez 2020 16:10
Letzte Änderung:20 Okt 2023 07:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.