Zorzi, Stefano und Bittner, Ksenia und Fraundorfer, Friedrich (2021) Machine-learned Regularization and Polygonization of Building Segmentation Masks. In: 25th International Conference on Pattern Recognition, ICPR 2020, Seiten 3098-3105. ICPR 2020, 2021-01-10 - 2021-01-15, Milano, Italien. doi: 10.1109/ICPR48806.2021.9412866. ISBN 978-1-7281-8808-9. ISSN 1051-4651.
PDF
4MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9412866
Kurzfassung
We propose a machine learning based approach for automatic regularization and polygonization of building segmentation masks. Taking an image as input, we first predict building segmentation maps exploiting generic fully convolutional network (FCN). A generative adversarial network (GAN) is then involved to perform a regularization of building boundaries to make them more realistic, i.e., having more rectilinear outlines which construct right angles if required. This is achieved through the interplay between the discriminator which gives a probability of input image being true and generator that learns from discriminator's response to create more realistic images. Finally, we train the backbone convolutional neural network (CNN) which is adapted to predict sparse outcomes corresponding to building corners out of regularized building segmentation results. Experiments on three building segmentation datasets demonstrate that the proposed method is not only capable of obtaining accurate results, but also of producing visually pleasing building outlines parameterized as polygons.
elib-URL des Eintrags: | https://elib.dlr.de/138210/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Machine-learned Regularization and Polygonization of Building Segmentation Masks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Januar 2021 | ||||||||||||||||
Erschienen in: | 25th International Conference on Pattern Recognition, ICPR 2020 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/ICPR48806.2021.9412866 | ||||||||||||||||
Seitenbereich: | Seiten 3098-3105 | ||||||||||||||||
ISSN: | 1051-4651 | ||||||||||||||||
ISBN: | 978-1-7281-8808-9 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | deep learning, building mask, polygonization, regularization | ||||||||||||||||
Veranstaltungstitel: | ICPR 2020 | ||||||||||||||||
Veranstaltungsort: | Milano, Italien | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 10 Januar 2021 | ||||||||||||||||
Veranstaltungsende: | 15 Januar 2021 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Bittner, Ksenia | ||||||||||||||||
Hinterlegt am: | 27 Nov 2020 09:17 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags