Schneider, Maja (2020) Automatic Shadow Detection and Removal in Aerial and Satellite Imagery using CNNs. Masterarbeit, Technical University of Munich.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The aim of this thesis was to detect and remove shadows from aerial and satellite images without the presence of shadow-free ground truth, using deep learning techniques. Hence as a first step, pre-existing neural networks to detect shadows were trained on the newly introduced DLR-SkyScapes-Shadow dataset. Then, for the shadow removal, several known techniques and experiments were conducted, leading to the presentation of a novel approach to remove shadows and therefore providing a method to extract information from shadowed areas. Despite not quite achieving the desired output quality, invaluable insights into the architectural properties required to obtain shadow free or shadow lighter images were gained. Experimental results show that the correct direction was pursued, and suggestions are made to which direction further research should proceed.
elib-URL des Eintrags: | https://elib.dlr.de/138150/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
Zusätzliche Informationen: | This master thesis was supervised by Seyed Majid Azimi, Dr. Reza Bahmanyar, and Dr. Daniele Cerra. | ||||||||
Titel: | Automatic Shadow Detection and Removal in Aerial and Satellite Imagery using CNNs | ||||||||
Autoren: |
| ||||||||
Datum: | 2020 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Nein | ||||||||
Seitenanzahl: | 101 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Shadow Removal, Aerial Imagery, Generative Adversarial Networks, Convolutional Neural Networks, Shadow Detection | ||||||||
Institution: | Technical University of Munich | ||||||||
Abteilung: | Faculty of Computer Science | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Verkehr | ||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt), V - UrMo Digital (alt), V - D.MoVe (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||
Hinterlegt von: | Azimi, Seyedmajid | ||||||||
Hinterlegt am: | 27 Nov 2020 10:10 | ||||||||
Letzte Änderung: | 27 Nov 2020 17:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags