elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

An optimization approach for hourly ozone simulation: a case study in Chongqing, China

Zhu, Songyan und Zeng, Qiaolin und Zhu, Hao und Xu, Jian und Gu, Jianbin und Wang, Yongqian und Chen, Liangfu (2021) An optimization approach for hourly ozone simulation: a case study in Chongqing, China. IEEE Geoscience and Remote Sensing Letters, 18 (11), Seiten 1871-1875. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2020.3010416. ISSN 1545-598X.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
12MB

Offizielle URL: https://ieeexplore.ieee.org/document/9153854

Kurzfassung

Continuous spatial knowledge is required to control the regional ozone pollution. Measurements from ground-level sites are beneficial to this goal, but their number is limited due to the huge expenses of site establishment, operation, and maintenance. Remote sensing seems a promising data source, but its application is challenged by bad weather conditions. Always covered by thick clouds, Chongqing, a populated industrial city in west China, is facing serious ozone pollution, but relevant studies here are relatively insufficient. Another alternative is estimating ozone by models. Well-performed models degrade in Chongqing partially due to the very complex terrain. Modeled hourly ozone does not agree with ground-level measurements. Therefore, an optimization approach is proposed to improve model estimates for such regions. This approach integrates the ground-level information (e.g., measured ozone and meteorology) through the employment of ResNet (Residual Network). ResNet overcomes the notorious vanishing gradient issue in classic neural networks, and the ability of learning complex systems is largely boosted. Ozone distribution is like a gray image that varies every second, which is not the case usually learned by ResNet. A color-image alike data structure is raised to address this ``nonstill image'' problem; according to the Taylor Expansion, polynomials can describe a complex system, and the errors are acceptable. To facilitate the usage in business operations, this approach is designed to be robust, inexpensive, and easy to use. The scheme of control site selection is discussed in detail. In cross-validations, this approach performs well, averaged R² is higher than 0.9 and the error is less than 5 μ g/m³.

elib-URL des Eintrags:https://elib.dlr.de/137986/
Dokumentart:Zeitschriftenbeitrag
Titel:An optimization approach for hourly ozone simulation: a case study in Chongqing, China
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zhu, SongyanDepartment of Geography, University of ExeterNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zeng, QiaolinCollege of Computer Science and Technology, Chongqing University of Posts and TelecommunicationsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, HaoChongqing Institute of Meteorological SciencesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Xu, Jianjian.xu (at) dlr.dehttps://orcid.org/0000-0003-2348-125XNICHT SPEZIFIZIERT
Gu, JianbinAerospace Information Research Institute, Chinese Academy of SciencesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wang, YongqianCollege of Environmental and Resource Science, Chengdu University of Information TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Chen, LiangfuAerospace Information Research Institute, Chinese Academy of SciencesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:November 2021
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:18
DOI:10.1109/LGRS.2020.3010416
Seitenbereich:Seiten 1871-1875
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:China National Environmental Monitoring Centre (CNEMC), image recognition, nested air quality prediction modeling system (NAQ-PMS), ozone pollution, ResNet, thick clouds.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Atmosphärenprozessoren
Hinterlegt von: Xu, Dr.-Ing. Jian
Hinterlegt am:25 Nov 2020 15:50
Letzte Änderung:01 Jan 2023 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.