elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Impact-atmosphere-interior interactions in terrestrial planets

Ruedas, T. und Wünnemann, K. und Grenfell, John Lee und Rauer, H. (2020) Impact-atmosphere-interior interactions in terrestrial planets. Europlanet Science Congress 2020, 2020-09-21 - 2020-10-09, Online. doi: 10.5194/epsc2020-783.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

We constructed a system of parameterized representations of impact-related processes such as crater formation, atmospheric erosion, and impact melt production in order to model how impactors of different types and a large range of sizes could affect CO2-H2O atmospheres and interiors of terrestrial planets similar to Mars, Venus, or the early Earth. Impactor-induced mass fluxes leading to e.g. atmospheric escape, delivery and outgassing are calculated assuming CO2-H2O atmospheres in order to assess under which conditions atmospheres and interiors could be depleted or enriched by processes related to impacts and associated melting or weathering. By combining parameterized models of single impacts with statistical information about the impactor flux such as the size-frequency distribution of impactors and the cratering chronology, one can deduce evolutionary paths of the volatile contents of the atmosphere and, within limits, of the interior. We consider rocky S-type and icy-rocky C-type asteroids as well as comets, covering a range of impactor-target density contrasts from about 1/6 to about 4/5 and a range of (absolute) impact velocities from a little less than 10 to almost 65 km/s. Impactor size ranges from 1 m to half the planetary radius. Atmospheric surface pressures cover almost five orders of magnitude, ranging from a few millibars (~modern Mars) up to 95 bar (~modern Venus). Mostly CO2-dominated atmospheric compositions representative for modern-day Mars and Venus were assumed; other gases were not included. With regard to atmospheric effects, there is a fundamental distinction to be made between blast-producing and crater-forming impacts; the boundary that separates these two regimes is mostly defined by the deceleration of the impactor and its resistance to breakup under the ram pressure during its traversal of the atmosphere. The direct effects of the former leave the interior essentially unaffected and interact only with the atmosphere. We use the formalism by Svetsov (2007) to assess the bulk mass transfer and balance resulting from mechanical erosion of the atmosphere and the disintegration of the impactor and estimate the balance for the individual volatiles from estimates of the impactor composition. In crater-forming impacts, there are additional effects that need to be included. Ejecta can contribute to the mechanical erosion of the atmosphere (e.g., Shuvalov et al., 2014) and also produce layers of porous material with a large, reactive surface that can absorb CO2 from the atmosphere by weathering in the long-term aftermath of an impact. Moreover, they produce craters which facilitate the interior-atmosphere mass exchange. A key process in this context is the production of impact melt, which can serve as a vehicle for volatiles between the atmosphere and the interior by either releasing or dissolving CO2 and water, depending mostly on the pressure conditions at the interface; generally outgassing is expected to be more common, but still the two volatiles may behave quite differently. Consistent with previous studies we find that CO2 is expelled from the melt much more easily than H2O and could therefore enter the atmosphere under all the conditions considered, whereas water may be retained in the melt at high atmospheric pressures.

elib-URL des Eintrags:https://elib.dlr.de/137886/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Impact-atmosphere-interior interactions in terrestrial planets
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ruedas, T.thomas.ruedas (at) dlr.dehttps://orcid.org/0000-0002-7739-1412NICHT SPEZIFIZIERT
Wünnemann, K.kai.wuennemann (at) mfn.berlinhttps://orcid.org/0000-0001-5423-1566NICHT SPEZIFIZIERT
Grenfell, John LeeLee.Grenfell (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rauer, H.Heike.Rauer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:30 September 2020
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5194/epsc2020-783
Status:veröffentlicht
Stichwörter:Impacts, Mars, Venus, Mantle convection, atmosphere, water, carbon dioxide
Veranstaltungstitel:Europlanet Science Congress 2020
Veranstaltungsort:Online
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:21 September 2020
Veranstaltungsende:9 Oktober 2020
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Ruedas Gomez, Thomas
Hinterlegt am:24 Nov 2020 11:41
Letzte Änderung:24 Apr 2024 20:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.