elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Qualitative Study of Machine Learning Practices and Engineering Challenges in Earth Observation

Jentzsch, Sophie F. und Hochgeschwender, Nico (2021) A Qualitative Study of Machine Learning Practices and Engineering Challenges in Earth Observation. it - Information Technology. de Gruyter. doi: 10.1515/itit-2020-0045. ISSN 1611-2776.

[img] PDF - Nur DLR-intern zugänglich - Preprintversion (eingereichte Entwurfsversion)
353kB
[img] PDF - Verlagsversion (veröffentlichte Fassung)
716kB

Offizielle URL: https://www.degruyter.com/document/doi/10.1515/itit-2020-0045/html

Kurzfassung

Machine Learning (ML) is ubiquitously on the advance. Like many domains, Earth Observation (EO) alsoincreasingly relies on ML applications, where ML methods are applied to process vast amounts of heterogeneous and continuous data streams to answer socially and en-vironmentally relevant questions. However, developing such ML-based EO systems remains challenging: Development processes and employed workflows are often barely structured and poorly reported. The application of ML methodsand techniques is considered to be opaque and the lack of transparency is contradictory to the responsible development of ML-based EO applications. To improve this situation a better understanding of the current practices and engineering-related challenges in developing ML-based EO applications is required. In this paper, we report observations from an exploratory study where five experts shared their view on ML-engineering in semi-structured interviews. We analysed these interviews with coding techniques as often applied in the domain of empirical software engineering. The interviews provide informative insights into the practical development of ML applications and reveal several engineering challenges. Inaddition, interviewees participated in a novel workflow sketching task, which provided a tangible reflection of implicit processes. Overall, the results confirm a gap between theoretical conceptions and real practices in ML development even though workflows were sketched abstractly as textbook-like. The results pave the way for a large-scale investigation on requirements for ML engineering in EO.

elib-URL des Eintrags:https://elib.dlr.de/137731/
Dokumentart:Zeitschriftenbeitrag
Titel:A Qualitative Study of Machine Learning Practices and Engineering Challenges in Earth Observation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Jentzsch, Sophie F.Sophie.Jentzsch (at) dlr.dehttps://orcid.org/0000-0001-6217-8814NICHT SPEZIFIZIERT
Hochgeschwender, NicoNico.Hochgeschwender (at) dlr.dehttps://orcid.org/0000-0003-1306-7880NICHT SPEZIFIZIERT
Datum:15 Juli 2021
Erschienen in:it - Information Technology
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1515/itit-2020-0045
Verlag:de Gruyter
ISSN:1611-2776
Status:veröffentlicht
Stichwörter:Machine Learning, Artificial Intelligence, Earth Observation, Process Models.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Aufgaben SISTEC
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie
Institut für Simulations- und Softwaretechnik
Institut für Simulations- und Softwaretechnik > Software für Raumfahrtsysteme und interaktive Visualisierung
Hinterlegt von: Jentzsch, Sophie Freya
Hinterlegt am:01 Sep 2021 09:59
Letzte Änderung:23 Okt 2023 09:11

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.