elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Volcanic SO2 Effective Layer Height Retrieval with OMI Using a Machine Learning Driven Approach

Fedkin, Nikita und Li, Can und Krotkov, Nickolay und Loyola, Diego und Hedelt, Pascal (2020) Volcanic SO2 Effective Layer Height Retrieval with OMI Using a Machine Learning Driven Approach. AGU Fall Meeting 2020, 2020-12-01 - 2020-12-17, San Francisco, USA / Online.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Information about the height and loading of aerosols and sulfur dioxide (SO2) plumes from volcanic eruptions is crucial for both aviation safety and for assessing the effect of volcanic sulfate aerosols on climate. Previously, a few retrieval techniques for the SO2 layer height using backscattered Earthshine ultraviolet (BUV) radiances have been demonstrated. However, these techniques often rely on time consuming direct spectral fitting methods and on-line radiative transfer calculations, and as a result are mostly not suited for near real time applications. Here, we introduce a new machine learning based algorithm for fast retrievals of effective volcanic SO2 layer height (SO2 LH) from the Ozone Monitoring Instrument (OMI) . The first part of this method is a training phase that utilizes extensive radiative transfer calculations to generate a large dataset of synthetic BUV spectra in the 310-330 nm spectral range. The principal components of this dataset, in addition to several key physical parameters, are used to train a feed-forward neural network to predict the SO2LH. This is followed by the application phase, where the trained inverse model is used on real OMI BUV measurements to retrieve the effective SO2 LH. The algorithm has been tested on four major explosive eruptions during the OMI data record. Results for the 2008 Kasatochi, 2019 Raikoke, 2015 Calbuco and 2014 Kelud eruptions are presented here and compared with volcanic plume heights estimated with other satellite sensors. For the most part, OMI-retrieved effective SO2 LHs agree well with the lidar measurements of co-located volcanic sulfate aerosol layer height from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and thermal infrared retrievals of SO2 LH from the infrared atmospheric sounding interferometer (IASI). The errors in OMI retrieved SO2 heights are estimated to be in the 1.5-2 km range for plumes with relatively large SO2 column densities exceeding ~40 Dobson Units (1DU= 2.69 x 1016 molecules SO2 cm-2). In the application phase the retrieval of plume height is highly efficient, and takes less than 3 minutes for a full OMI orbit. This approach and similar machine learning based applications can also be readily adapted for other satellite UV-Vis spectrometers.

elib-URL des Eintrags:https://elib.dlr.de/137718/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Volcanic SO2 Effective Layer Height Retrieval with OMI Using a Machine Learning Driven Approach
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fedkin, NikitaUniversity of Maryland College ParkNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Li, CanNASA Goddard Space Flight Center, Greenbelt, MD 20771, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Krotkov, NickolayUniv. of Maryland at Baltimore County, Baltimore, MD USAhttps://orcid.org/0000-0001-6170-6750NICHT SPEZIFIZIERT
Loyola, DiegoDiego.Loyola (at) dlr.dehttps://orcid.org/0000-0002-8547-9350NICHT SPEZIFIZIERT
Hedelt, PascalPascal.Hedelt (at) dlr.dehttps://orcid.org/0000-0002-1752-0040NICHT SPEZIFIZIERT
Datum:2020
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:SO2, Machine Learning, Volcanoes, OMI, SO2 layer height
Veranstaltungstitel:AGU Fall Meeting 2020
Veranstaltungsort:San Francisco, USA / Online
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:1 Dezember 2020
Veranstaltungsende:17 Dezember 2020
Veranstalter :AGU
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):Vorhaben Spektroskopische Verfahren in der Fernerkundung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Atmosphärenprozessoren
Hinterlegt von: Hedelt, Pascal
Hinterlegt am:19 Nov 2020 09:16
Letzte Änderung:24 Apr 2024 20:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.