Wiegmann, Matti und Kersten, Jens und Klan, Friederike und Potthast, Martin und Stein, Benno (2020) Analysis of Detection Models for Disaster-Related Tweets. In: 17th Annual International Conference on Information Systems for Crisis Response and Management, ISCRAM 2020, Seiten 872-880. ISCRAM 2020, 2020-05-24 - 2020-05-27, Blacksburg, VA, USA. ISBN 978-194937327-1. ISSN 2411-3387.
|
PDF
1MB |
Offizielle URL: http://idl.iscram.org/files/mattiwiegmann/2020/2278_MattiWiegmann_etal2020.pdf
Kurzfassung
Social media is perceived as a rich resource for disaster management and relief efforts, but the high class imbalance between disaster-related and non-disaster-related messages challenges a reliable detection. We analyze and compare the effectiveness of three state-of-the-art machine learning models for detecting disaster-related tweets. In this regard we introduce the Disaster Tweet Corpus 2020, an extended compilation of existing resources, which comprises a total of 123,166 tweets from 46 disasters covering 9 disaster types. Our findings from a large experiments series include: detection models work equally well over a broad range of disaster types when being trained for the respective type, a domain transfer across disaster types leads to unacceptable performance drops, or, similarly, type-agnostic classification models behave more robust at a lower effectiveness level. Altogether, the average misclassification rate of 3,8\% on performance-optimized detection models indicates effective classification knowledge but comes at the price of insufficient generalizability.
| elib-URL des Eintrags: | https://elib.dlr.de/137213/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
| Titel: | Analysis of Detection Models for Disaster-Related Tweets | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | Mai 2020 | ||||||||||||||||||||||||
| Erschienen in: | 17th Annual International Conference on Information Systems for Crisis Response and Management, ISCRAM 2020 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 872-880 | ||||||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||||||
| ISSN: | 2411-3387 | ||||||||||||||||||||||||
| ISBN: | 978-194937327-1 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Tweet Filtering, Crisis Management, Evaluation Framework | ||||||||||||||||||||||||
| Veranstaltungstitel: | ISCRAM 2020 | ||||||||||||||||||||||||
| Veranstaltungsort: | Blacksburg, VA, USA | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 24 Mai 2020 | ||||||||||||||||||||||||
| Veranstaltungsende: | 27 Mai 2020 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||||||||||
| Standort: | Jena | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Datenwissenschaften > Bürgerwissenschaften | ||||||||||||||||||||||||
| Hinterlegt von: | Kersten, Dr.-Ing. Jens | ||||||||||||||||||||||||
| Hinterlegt am: | 13 Nov 2020 14:01 | ||||||||||||||||||||||||
| Letzte Änderung: | 10 Jul 2024 08:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags