elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Opto-Mechanical Inertial Sensors (OMIS) for High Temporal Resolution Gravimetry

Kumanchik, Lee und Guzman, Felipe und Braxmaier, Claus (2020) Opto-Mechanical Inertial Sensors (OMIS) for High Temporal Resolution Gravimetry. EGU General Assembly 2020, 2020-05-04 - 2020-05-08, Online.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://presentations.copernicus.org/EGU2020/EGU2020-22614_presentation.pdf

Kurzfassung

Gravity field measurement by free-falling atoms has the potential for very high stability over time as the measurement exposes a direct, fundamental relationship between mass and acceleration. However, the measurement rate of the current state-of-the-art limits the performance at short timescales (greater than 1 Hz). Classical inertial sensors operate at much faster response times and are thus natural companions for free-falling atom sensors. Such a hybrid device would gain the ultra-high stability of the free-falling atom sensor while greatly extending the bandwidth to higher frequency using the classical sensor. This requires the stable bandwidth of both devices to overlap sufficiently. We have developed opto-mechanical inertial sensors (OMIS) with good long term stability for just this purpose. The sensors are made of highly stable fused silica material, feature a monolithic optical cavity for displacement readout, and utilize a laser diode stabilized to a molecular reference. With no temperature control and only the thermal shielding provided by the vacuum chamber, this device is stable down to 0.1 Hz which overlaps with the bandwidth of free-falling atom sensors. The OMIS are self-calibrating by converting the fundamental resonances of a molecular gas into length using the free-spectral range of the optical cavity, FSR = c/2nL, and then sampling the OMIS mechanical damping rate and resonance frequency using a nearby piezo. This acceleration calibration is potentially transferable to a companion free-falling atom sensor. Readout is performed by modulating the cavity length of the OMIS with one cavity mirror being the OMIS itself and the other being a high frequency resonator. The high frequency resonator is driven by a nearby piezo well above the response rate of the OMIS and acts like an ultrastable quartz clock. The resulting highly stable tone is demodulated by the readout electronics. For the low finesse optical cavity used here, this yields a displacement resolution of 2x10-13 m/rtHz and a high frequency acceleration resolution of 400 ng /rtHz. At 0.1 Hz the acceleration resolution is 1.5 mug /rtHz limited by the stability of our vibration isolation stage. The OMIS dimensions are about 30 mm x 30 mm x 5 mm and can be fiber coupled to enable co-location with other sensors or as standalone devices for future gravimetry both on Earth and in space

elib-URL des Eintrags:https://elib.dlr.de/136890/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Opto-Mechanical Inertial Sensors (OMIS) for High Temporal Resolution Gravimetry
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kumanchik, LeeDLR BremenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Guzman, FelipeUniversity of ArizonaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Braxmaier, ClausDLR-RY, ZARM, University of Bremen,1Astrium GmbH–Satellites, 88039 Friedrichshafen, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:7 Mai 2020
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:optical cavity inertial sensor linear acceleration drift
Veranstaltungstitel:EGU General Assembly 2020
Veranstaltungsort:Online
Veranstaltungsart:Andere
Veranstaltungsbeginn:4 Mai 2020
Veranstaltungsende:8 Mai 2020
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Systems Engineering Optische Systeme (alt)
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Systems Enabling Technologies
Hinterlegt von: Hamann, Ines
Hinterlegt am:27 Okt 2020 09:03
Letzte Änderung:24 Apr 2024 20:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.