Eschenbach, Annette und Yepes, Guillermo und Tenllado, Christian und Gomez Perez, Jose und Pinuel, Luis und Zarzalejo, L.F. und Wilbert, Stefan (2020) Spatio-temporal resolution of irradiance samples in Machine Learning approaches for irradiance forecasting. IEEE Access, 8, Seiten 51518-51531. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/ACCESS.2020.2980775. ISSN 2169-3536.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9035506
Kurzfassung
Improving short term solar irradiance forecasting is crucial to increase the market share of the solar energy production. This paper analyzes the impact of using spatially distributed irradiance sensors as inputs to four machine learning algorithms: ARX, NN, RRF and RT. We used data from two different sensor networks for our experiments, the NREL dataset that includes data from 17 sensors that cover a 1 km 2 area and the InfoRiego dataset which includes data from 50 sensors that cover an area of 94Km 2 . Several studies have been published that use these datasets individually, to the author knowledge this is the first work that evaluates the influence of the spatially distributed data across a range from 0.5 to 17 sensors per km 2 . We show that all of algorithms evaluated are able to take advantage of the data from the surroundings, from the very short forecast horizons of 10s up to a few hours, and that the wind direction and intensity plays an important role in the optimal distribution of the network and its density. We show that these machine learning methods are more effective on the short horizons when data is obtained from a dense enough network to capture the cloud movements in the prediction interval, and that in those cases complex non-linear models give better results. On the other hand, if only a sparse network is available, the simpler linear models give better results. The skills obtained with the models under test range from 13% to 70%, depending on the sensor network density, time resolution and lead time.
elib-URL des Eintrags: | https://elib.dlr.de/136683/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Spatio-temporal resolution of irradiance samples in Machine Learning approaches for irradiance forecasting | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 13 März 2020 | ||||||||||||||||||||||||||||||||
Erschienen in: | IEEE Access | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 8 | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/ACCESS.2020.2980775 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 51518-51531 | ||||||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||
ISSN: | 2169-3536 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Machine Learning, Forecasting, Spatial Resolution, Solar Irradiance, Global Horizontal Irradiance | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||||||
HGF - Programm: | Erneuerbare Energie | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Konzentrierende solarthermische Technologien | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Einfluss von Wüstenbedingungen (alt) | ||||||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Qualifizierung | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Kruschinski, Anja | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 20 Okt 2020 08:02 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 20 Okt 2020 08:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags