elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English Samstag, 28. Dezember 2024
Schriftgröße: [-] Text [+]

A CFD-Based Prediction Method for Tip Clearance Losses and Deviations in Axial Turbines

Buske, Clemens (2020) A CFD-Based Prediction Method for Tip Clearance Losses and Deviations in Axial Turbines. In: ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020. ASME Turbo Expo 2020, 2020-09-21 - 2020-09-25, Virtual Conference. doi: 10.1115/GT2020-14645. ISBN 978-079188419-5.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Accurate loss models are crucial for reliable turbine performance predictions using low-fidelity tools. However, the complex flow structure of the blade tip gap flow impedes an experimental deduction of a realistic tip clearance loss model. In this work, validated, high-fidelity CFD simulations are used to substitute the cost- and time-consuming experiments of a parameter study and to develop a modern, flexible and universal tip clearance model. The CFD model is based on a single stage high-pressure turbine. Inflow conditions and geometry of the rotor were specifically varied to separately study the effects of the significant parameters on the tip clearance loss and deviation. Partial correlations were formulated for each effect and combined to a new tip clearance model. Apart from commonly considered parameters such as gap height, blade loading and solidity, other parameters that are well known to have an effect but are still disregarded in most conventional loss correlations are also investigated, such as incidence, Reynolds number, rotor speed and boundary layer thickness. Furthermore, a downstream progression model is presented that reflects the local conditions of the incompletely mixed out wake flow. Interrelations between the effects are modeled by a Kriging surrogate model, which was refined by the space filling technique. The new model was validated by additional CFD simulations at unprobed operation conditions. In addition, the new model was implemented into a through flow method. Performance calculations were performed for a four-stage air turbine and compared with experimental data. In comparison with the conventional tip clearance correlations, the new model improves the performance predictions at all operation points.

elib-URL des Eintrags:https://elib.dlr.de/136575/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A CFD-Based Prediction Method for Tip Clearance Losses and Deviations in Axial Turbines
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iD
Buske, ClemensClemens.Buske (at) dlr.dehttps://orcid.org/0000-0003-4157-7415
Datum:September 2020
Erschienen in:ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, GT 2020
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1115/GT2020-14645
ISBN:978-079188419-5
Status:veröffentlicht
Stichwörter:loss correlation, tip clearance, turbine
Veranstaltungstitel:ASME Turbo Expo 2020
Veranstaltungsort:Virtual Conference
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:21 September 2020
Veranstaltungsende:25 September 2020
Veranstalter :ASME
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Turbinentechnologien (alt), E - Gasturbine (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Antriebstechnik > Turbine
Hinterlegt von: Grunwitz, Dr.-Ing. Clemens
Hinterlegt am:10 Nov 2020 10:32
Letzte Änderung:24 Apr 2024 20:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Einige Felder oben sind zurzeit ausgeblendet: Alle Felder anzeigen
Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.