Maitanova, Nailya und Telle, Jan-Simon und Hanke, Benedikt und Grottke, Matthias und Schmidt, Thomas und Maydell, Karsten von und Agert, Carsten (2020) A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports. Energies, 13 (3). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en13030735. ISSN 1996-1073.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://www.mdpi.com/635914
Kurzfassung
A fully automated transferable predictive approach was developed to predict photovoltaic (PV) power output for a forecasting horizon of 24 h. The prediction of PV power output was made with the help of a long short‐term memory machine learning algorithm. The main challenge of the approach was using (1) publicly available weather reports without solar irradiance values and (2) measured PV power without any technical information about the PV system. Using this input data, the developed model can predict the power output of the investigated PV systems with adequate accuracy. The lowest seasonal mean absolute scaled error of the prediction was reached by maximum size of the training set. Transferability of the developed approach was proven by making predictions of the PV power for warm and cold periods and for two different PV systems located in Oldenburg and Munich, Germany. The PV power prediction made with publicly available weather data was compared to the predictions made with fee‐based solar irradiance data. The usage of the solar irradiance data led to more accurate predictions even with a much smaller training set. Although the model with publicly available weather data needed greater training sets, it could still make adequate predictions.
elib-URL des Eintrags: | https://elib.dlr.de/136405/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Zusätzliche Informationen: | This paper is reprinted in a book "Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications". The reprint book will be listed in the Directory of Open Access Books (DOAB), Google Books and WorldCat. Link: https://www.mdpi.com/books/pdfview/book/2934 ISBN 978-3-03943-201-1 (PDF) | ||||||||||||||||||||||||||||||||
Titel: | A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 7 Februar 2020 | ||||||||||||||||||||||||||||||||
Erschienen in: | Energies | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 13 | ||||||||||||||||||||||||||||||||
DOI: | 10.3390/en13030735 | ||||||||||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||||||||||
ISSN: | 1996-1073 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | photovoltaic power prediction; publicly available weather reports; machine learning; long short-term memory; integrated energy systems; smart energy management | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||||||
HGF - Programm: | TIG Technologie, Innovation und Gesellschaft | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erneuerbare Energie- und Materialressourcen für eine nachhaltige Zukunft | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemanalyse | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnik (alt) | ||||||||||||||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Energiesystemtechnologie | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Maitanova, Nailya | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 20 Okt 2020 11:15 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 25 Okt 2023 08:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags