Yuan, Xiangtian und Tian, Jiaojiao und Reinartz, Peter (2020) Generating artificial near infrared spectral band from rgb image using conditional generative adversarial network. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3, Seiten 279-285. Copernicus Publications. ISPRS Congress, 2020-08-31 - 2020-09-02, Nizza, Frankreich. doi: 10.5194/isprs-annals-V-3-2020-279-2020. ISSN 2194-9042.
PDF
6MB |
Offizielle URL: https://doi.org/10.5194/isprs-annals-V-3-2020-279-2020
Kurzfassung
Near infrared bands (NIR) provide rich information for many remote sensing applications. In addition to deriving useful indices to delineate water and vegetation, near infrared channels could also be used to facilitate image pre-processing. However, synthesizing bands from RGB spectrum is not an easy task. The inter-correlations between bands are not clearly identified in physical models. Generative adversarial networks (GAN) have been used in many tasks such as generating photorealistic images, monocular depth estimation and Digital Surface Model (DSM) refinement etc. Conditional GAN is different in that it observes some data as a condition. In this paper, we explore a cGAN network structure to generate a NIR spectral band that is conditioned on the input RGB image. We test different discriminators and loss functions, and evaluate results using various metrics. The best simulated NIR channel has a mean absolute error of around 5 percent in Sentinel-2 dataset. In addition, the simulated NIR image can correctly distinguish between various classes of landcover.
elib-URL des Eintrags: | https://elib.dlr.de/136251/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Zusätzliche Informationen: | Aufgrund Corona wurde der Vortrag nicht gehalten | ||||||||||||||||
Titel: | Generating artificial near infrared spectral band from rgb image using conditional generative adversarial network | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 1 September 2020 | ||||||||||||||||
Erschienen in: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | V-3 | ||||||||||||||||
DOI: | 10.5194/isprs-annals-V-3-2020-279-2020 | ||||||||||||||||
Seitenbereich: | Seiten 279-285 | ||||||||||||||||
Verlag: | Copernicus Publications | ||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Near-infrared, RGB, Generative adversarial networks, Robust loss function, Conditional GAN | ||||||||||||||||
Veranstaltungstitel: | ISPRS Congress | ||||||||||||||||
Veranstaltungsort: | Nizza, Frankreich | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 31 August 2020 | ||||||||||||||||
Veranstaltungsende: | 2 September 2020 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Yuan, Xiangtian | ||||||||||||||||
Hinterlegt am: | 09 Okt 2020 11:43 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags