Kraus, Maximilian und Azimi, Seyedmajid und Ercelik, Emec und Bahmanyar, Reza und Reinartz, Peter und Knoll, Alois (2021) AerialMPTNet: Multi-Pedestrian Tracking in Aerial Imagery Using Temporal and Graphical Features. In: 25th International Conference on Pattern Recognition, ICPR 2020, Seiten 2454-2461. ICPR 2020, 2021-01-10 - 2021-01-15, Milan, Italy. doi: 10.1109/ICPR48806.2021.9413031. ISBN 978-1-7281-8808-9. ISSN 1051-4651.
PDF
10MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9413031
Kurzfassung
Multi-pedestrian tracking in aerial imagery has several applications such as large-scale event monitoring, disaster management, search-and-rescue missions, and as input into predictive crowd dynamic models. Due to the challenges such as the large number and the tiny size of the pedestrians (e.g., 4×4 pixels) with their similar appearances as well as different scales and atmospheric conditions of the images with their extremely low frame rates (e.g., 2 fps), current state-of-the-art algorithms including the deep learning-based ones are unable to perform well. In this paper, we propose AerialMPTNet, a novel approach for multi-pedestrian tracking in geo-referenced aerial imagery by fusing appearance features from a Siamese Neural Network, movement predictions from a Long Short-Term Memory, and pedestrian interconnections from a GraphCNN. In addition, to address the lack of diverse aerial pedestrian tracking datasets, we introduce the Aerial Multi-Pedestrian Tracking (AerialMPT) dataset consisting of 307 frames and 44,740 pedestrians annotated. We believe that AerialMPT is the largest and most diverse dataset to this date and will be released publicly. We evaluate AerialMPTNet on AerialMPT and KIT AIS, and benchmark with several state-of-the-art tracking methods. Results indicate that AerialMPTNet significantly outperforms other methods on accuracy and time-efficiency.
elib-URL des Eintrags: | https://elib.dlr.de/136057/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | AerialMPTNet: Multi-Pedestrian Tracking in Aerial Imagery Using Temporal and Graphical Features | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Januar 2021 | ||||||||||||||||||||||||||||
Erschienen in: | 25th International Conference on Pattern Recognition, ICPR 2020 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
DOI: | 10.1109/ICPR48806.2021.9413031 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 2454-2461 | ||||||||||||||||||||||||||||
ISSN: | 1051-4651 | ||||||||||||||||||||||||||||
ISBN: | 978-1-7281-8808-9 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Aerial Imagery; Deep Neural Networks; Pedestrian Tracking; Vehicle Tracking | ||||||||||||||||||||||||||||
Veranstaltungstitel: | ICPR 2020 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Milan, Italy | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 10 Januar 2021 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 15 Januar 2021 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||||||
Hinterlegt von: | Bahmanyar, Gholamreza | ||||||||||||||||||||||||||||
Hinterlegt am: | 24 Sep 2020 11:30 | ||||||||||||||||||||||||||||
Letzte Änderung: | 05 Jun 2024 12:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags