elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Long-Short Skip Connections in Deep Neural Networks for DSM Refinement

Bittner, Ksenia und Liebel, Lukas und Körner, Marco und Reinartz, Peter (2020) Long-Short Skip Connections in Deep Neural Networks for DSM Refinement. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII (B2), Seiten 383-390. ISPRS 2020, 2020-08-31 - 2020-09-02, Nice, France ONLINE. doi: 10.5194/isprs-archives-XLIII-B2-2020-383-2020. ISSN 1682-1750.

[img] PDF
5MB

Offizielle URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B2-2020/383/2020/

Kurzfassung

Detailed digital surface models (DSMs) from space-borne sensors are the key to successful solutions for many remote sensing problems, like environmental disaster simulations, change detection in rural and urban areas, 3D urban modeling for city planning and management, etc. Traditional methodologies, e.g., stereo matching, used to generate photogrammetric DSMs from stereo imagery, usually deliver low-quality results due to the matching errors in homogeneous areas or the lack of information when observing the scene under different viewing angles. This makes the tasks related to building reconstruction very challenging since in most cases it is difficult to recognize the type of roofs, especially if overlaid with trees. This work represents a continuation of research regarding the automatic optimization of building geometries in photogrammetric DSMs with half-meter resolution and introduces an improved generative adversarial network (GAN) architecture which allows to reconstruct complete and detailed building structures without neglecting even low-rise urban constructions. The generative part of the network is constructed in a way that it simultaneously processes height and intensity information, and combines short and long skip connections within one architecture. To improve different aspects of the surface, several loss terms are used, the contributions of which are automatically balanced during training. The obtained results demonstrate that the proposed methodology can achieve two goals without any manual intervention: improve the roof surfaces by making them more planar and also recognize and optimize even small residential buildings which are hard to detect.

elib-URL des Eintrags:https://elib.dlr.de/135964/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Long-Short Skip Connections in Deep Neural Networks for DSM Refinement
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bittner, KseniaKsenia.Bittner (at) dlr.dehttps://orcid.org/0000-0002-4048-3583NICHT SPEZIFIZIERT
Liebel, Lukaslukas.liebel (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Körner, Marcomarco.koerner (at) tum.dehttps://orcid.org/0000-0002-9186-4175NICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:12 August 2020
Erschienen in:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Band:XLIII
DOI:10.5194/isprs-archives-XLIII-B2-2020-383-2020
Seitenbereich:Seiten 383-390
Name der Reihe:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
ISSN:1682-1750
Status:veröffentlicht
Stichwörter:Conditional generative adversarial networks (cGANs), balancing hyper-parameters, long-short skip connections, 3D scene refinement, building geometry
Veranstaltungstitel:ISPRS 2020
Veranstaltungsort:Nice, France ONLINE
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:31 August 2020
Veranstaltungsende:2 September 2020
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - NGC KoFiF (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Bittner, Ksenia
Hinterlegt am:14 Sep 2020 13:56
Letzte Änderung:24 Apr 2024 20:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.