elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Classifying direct normal irradiance 1-minute temporal variability from spatial characteristics of geostationary satellite-based cloud observations

Schroedter-Homscheidt, Marion und Kosmale, Miriam und Saint-Drenan, Yves-Marie (2020) Classifying direct normal irradiance 1-minute temporal variability from spatial characteristics of geostationary satellite-based cloud observations. Meteorologische Zeitschrift, 29 (2), Seiten 131-145. Borntraeger Science Publishers. doi: 10.1127/metz/2020/0998. ISSN 0941-2948.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://www.schweizerbart.de/papers/metz/detail/29/93579/Classifying_direct_normal_irradiance_1_minute_temporal_variability_from_spatial_characteristics_of_geostationary_satellite_based_cloud_observations

Kurzfassung

t Variability of solar surface irradiances in the 1-minute range is of interest especially for solar energy applications. Eight variability classes were previously defined for the 1 min resolved direct normal irradiance (DNI) variability inside an hour. In this study spatial structural parameters derived fromsatellite-based cloud observations are used as classifiers in order to detect the associated direct normal irradiance (DNI) variability class in a supervised classification scheme. A neighbourhood of 3×3 to 29×29 satellite pixels is evaluated to derive classifiers describing the actual cloud field better than just using a single satellite pixel at the location of the irradiance observation. These classifiers include cloud fraction in a window around the location of interest, number of cloud/cloud free changes in a binary cloud mask in this window, number of clouds, and a fractal box dimension of the cloud mask within the window. Furthermore, cloud physical parameters as cloud phase, cloud optical depth, and cloud top temperature are used as pixel-wise classifiers. A classification scheme is set up to search for the DNI variability class with a best agreement between these classifiers and the pre-existing knowledge on the characteristics of the cloud field within each variability class from the reference data base. Up to 55 % of all DNI variability class members are identified in the same class as in the reference data base. And up to 92 % cases are identified correctly if the neighbouring class is counted as success as well – the latter is a common approach in classifying natural structures showing no clear distinction between classes as in our case of temporal variability. Such a DNI variability classification method allows comparisons of different project sites in a statistical and automatic manner e.g. to quantify short-term variability impacts on solar power production. This approach is based on satellite-based cloud observations only and does not require any ground observations of the location of interest.

elib-URL des Eintrags:https://elib.dlr.de/135936/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:weiteres EU-Projekt: info:eu-repo/grantAgreement/EC/FP7/654984
Titel:Classifying direct normal irradiance 1-minute temporal variability from spatial characteristics of geostationary satellite-based cloud observations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schroedter-Homscheidt, Marionmarion.schroedter-homscheidt (at) dlr.dehttps://orcid.org/0000-0002-1854-903XNICHT SPEZIFIZIERT
Kosmale, Miriammiriam.kosmale (at) fmi.fiNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Saint-Drenan, Yves-Marieyves-marie.saint-drenan (at) mines-paristech.frNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:4 August 2020
Erschienen in:Meteorologische Zeitschrift
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:29
DOI:10.1127/metz/2020/0998
Seitenbereich:Seiten 131-145
Verlag:Borntraeger Science Publishers
ISSN:0941-2948
Status:veröffentlicht
Stichwörter:Variability, global horizontal irradiance, direct irradiance, automatic classification, satellitebased, clouds, textural parameters
HGF - Forschungsbereich:Energie
HGF - Programm:TIG Technologie, Innovation und Gesellschaft
HGF - Programmthema:Erneuerbare Energie- und Materialressourcen für eine nachhaltige Zukunft
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemanalyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Systemanalyse und Technikbewertung (alt)
Standort: Oberpfaffenhofen , Oldenburg
Institute & Einrichtungen:Institut für Vernetzte Energiesysteme > Energiesystemanalyse
Deutsches Fernerkundungsdatenzentrum > Atmosphäre
Hinterlegt von: Schroedter-Homscheidt, Marion
Hinterlegt am:14 Sep 2020 10:17
Letzte Änderung:24 Okt 2023 14:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.