elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Dust sputtering within the inner heliosphere: a modelling study

Baumann, Carsten und Myrvang, Margaretha und Mann, Ingrid (2020) Dust sputtering within the inner heliosphere: a modelling study. Annales Geophysicae, 38, Seiten 919-930. Copernicus Publications. doi: 10.5194/angeo-38-919-2020. ISSN 0992-7689.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://angeo.copernicus.org/articles/38/919/2020/

Kurzfassung

The aim of this study is to investigate through modeling how sputtering by impacting solar wind ions influences the lifetime of dust particles in the inner heliosphere near the Sun. We consider three typical dust materials: silicate, Fe$_{0.4}$Mg$_{0.6}$O and carbon and describe their sputtering yields based on atomic yields given by the Stopping and Range of Ions in Matter (SRIM) package. The influence of the solar wind is characterized by plasma density, solar wind speed and solar wind composition and we assume for these parameters values that are typical for fast solar wind, slow solar wind and CME conditions to calculate the sputtering lifetimes of dust. To compare the sputtering lifetimes to typical sublimation lifetimes we use temperature estimates based on Mie calculations and material vapour pressure derived with the chemical equilibrium code MAGMA. We also compare the sputtering lifetimes to the Poynting-Robertson lifetime and to the collision lifetime. We present a set of sputtering rates and lifetimes that can be used for estimating dust destruction in the fast and slow solar wind and during CME conditions. Our results can be applied to solid particles of a few nm and larger. The sputtering lifetimes increase linearly with the size of particles. We show that sputtering rates increase during CME conditions, primarily because of the high number densities of heavy ions in the CME plasma. The shortest sputtering lifetimes we find are for silicate, followed by Fe$_{0.4}$Mg$_{0.6}$O and carbon. In a comparison between sputtering and sublimation lifetimes we concentrate on the nanodust population. The comparison shows that sublimation is the faster destruction process within 0.1 AU for Fe$_{0.4}$Mg$_{0.6}$O, within 0.05 AU for carbon dust and within 0.07 AU for silicate dust. The destruction by sputtering can play a role in the vicinity of the Sun. We discuss our findings in the context of recent F-corona intensity measurements onboard Parker Solar Probe.

elib-URL des Eintrags:https://elib.dlr.de/135705/
Dokumentart:Zeitschriftenbeitrag
Titel:Dust sputtering within the inner heliosphere: a modelling study
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Baumann, Carstencarsten.baumann (at) dlr.dehttps://orcid.org/0000-0001-7104-5992NICHT SPEZIFIZIERT
Myrvang, Margarethamargaretha.myrvang (at) uit.noNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mann, Ingridingrid.b.mann (at) uit.nohttps://orcid.org/0000-0002-2805-3265NICHT SPEZIFIZIERT
Datum:3 August 2020
Erschienen in:Annales Geophysicae
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:38
DOI:10.5194/angeo-38-919-2020
Seitenbereich:Seiten 919-930
Verlag:Copernicus Publications
ISSN:0992-7689
Status:veröffentlicht
Stichwörter:dust, sputtering, Solar Orbiter, Parker Solar Probe
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):R - keine Zuordnung
Standort: Neustrelitz
Institute & Einrichtungen:Institut für Solar-Terrestrische Physik > Weltraumwettereinfluß
Hinterlegt von: Baumann, Carsten
Hinterlegt am:01 Okt 2020 11:20
Letzte Änderung:27 Okt 2023 15:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.