Xia, Yuanxin und d'Angelo, Pablo und Tian, Jiaojiao und Fraundorfer, Friedrich und Reinartz, Peter (2020) Multi-label learning based semi-global matching forest. Remote Sensing, 12 (1069), Seiten 1-21. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs12071069. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
13MB |
Kurzfassung
Semi-Global Matching (SGM) approximates a 2D Markov Random Field (MRF) via multiple 1D scanline optimizations, which serves as a good trade-off between accuracy and efficiency in dense matching. Nevertheless, the performance is limited due to the simple summation of the aggregated costs from all 1D scanline optimizations for the final disparity estimation. SGM-Forest improves the performance of SGM by training a random forest to predict the best scanline according to each scanline’s disparity proposal. The disparity estimated by the best scanline acts as reference to adaptively adopt close proposals for further post-processing. However, in many cases more than one scanline is capable of providing a good prediction. Training the random forest with only one scanline labeled may limit or even confuse the learning procedure when other scanlines can offer similar contributions. In this paper, we propose a multi-label classification strategy to further improve SGM-Forest. Each training sample is allowed to be described by multiple labels (or zero label) if more than one (or none) scanline gives a proper prediction. We test the proposed method on stereo matching datasets, from Middlebury, ETH3D, EuroSDR image matching benchmark, and the 2019 IEEE GRSS data fusion contest. The result indicates that under the framework of SGM-Forest, the multi-label strategy outperforms the single-label scheme consistently.
elib-URL des Eintrags: | https://elib.dlr.de/135574/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Multi-label learning based semi-global matching forest | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2020 | ||||||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 12 | ||||||||||||||||||||||||
DOI: | 10.3390/rs12071069 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-21 | ||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Semi-Global Matching (SGM), random forests, scanline, multi-label classification, disparity, learning | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - D.MoVe (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Xia, Yuanxin | ||||||||||||||||||||||||
Hinterlegt am: | 20 Jul 2020 13:56 | ||||||||||||||||||||||||
Letzte Änderung: | 25 Okt 2023 08:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags