Scholz, Yvonne und Fuchs, Benjamin und Borggrefe, Frieder und Cao, Karl-Kien und Wetzel, Manuel und von Krbek, Kai und Cebulla, Felix und Gils, Hans Christian und Fiand, Frederik und Bussieck, Michael und Koch, Thorsten und Rehfeldt, Daniel und Gleixner, Ambros und Khabi, Dmitry und Breuer, Thomas und Rohe, Daniel und Hobbie, Hannes und Schönheit, David und Yilmaz, Hasan Ümitcan und Panos, Evangelos und Jeddi, Samir und Buchholz, Stefanie (2020) Speeding up Energy System Models - a Best Practice Guide. [sonstige Veröffentlichung]
PDF
15MB |
Offizielle URL: https://gitlab.com/beam-me/bpg
Kurzfassung
Background Energy system models (ESM) are widely used in research and industry to analyze todays and future energy systems and potential pathways for the European energy transition. Current studies address future policy design, analysis of technology pathways and of future energy systems. To address these questions and support the transformation of today’s energy systems, ESM have to increase in complexity to provide valuable quantitative insights for policy makers and industry. Especially when dealing with uncertainty and in integrating large shares of renewable energies, ESM require a detailed implementation of the underlying electricity system. The increased complexity of the models makes the application of ESM more and more difficult, as the models are limited by the available computational power of today’s decentralized workstations. Severe simplifications of the models are common strategies to solve problems in a reasonable amount of time – naturally significantly influencing the validity of results and reliability of the models in general. Solutions for Energy-System Modelling Within BEAM-ME a consortium of researchers from different research fields (system analysis, mathematics, operations research and informatics) develop new strategies to increase the computational performance of energy system models and to transform energy system models for usage on high performance computing clusters. Within the project, an ESM will be applied on two of Germany’s fastest supercomputers. To further demonstrate the general application of named techniques on ESM, a model experiment is implemented as part of the project. Within this experiment up to six energy system models will jointly develop, implement and benchmark speed-up methods. Finally, continually collecting all experiences from the project and the experiment, identified efficient strategies will be documented and general standards for increasing computational performance and for applying ESM to high performance computing will be documented in a best-practice guide.
elib-URL des Eintrags: | https://elib.dlr.de/135507/ |
---|---|
Dokumentart: | sonstige Veröffentlichung |
Titel: | Speeding up Energy System Models - a Best Practice Guide |
Autoren: | |
Datum: | Juni 2020 |
Referierte Publikation: | Nein |
Open Access: | Ja |
Seitenanzahl: | 175 |
Status: | veröffentlicht |
Stichwörter: | Energy System Modeling, High Performance Computing, PIPS, Parallelization |
HGF - Forschungsbereich: | Energie |
HGF - Programm: | TIG Technologie, Innovation und Gesellschaft |
HGF - Programmthema: | Erneuerbare Energie- und Materialressourcen für eine nachhaltige Zukunft |
DLR - Schwerpunkt: | Energie |
DLR - Forschungsgebiet: | E SY - Energiesystemanalyse |
DLR - Teilgebiet (Projekt, Vorhaben): | E - Systemanalyse und Technikbewertung (alt) |
Standort: | Stuttgart |
Institute & Einrichtungen: | Institut für Technische Thermodynamik > Energiesystemanalyse |
Hinterlegt von: | Cao, Dr.-Ing. Karl-Kien |
Hinterlegt am: | 17 Jul 2020 14:06 |
Letzte Änderung: | 17 Jul 2020 14:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags