elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep learning reveals seasonal patterns of Antarctic ice shelf front fluctuations

Baumhoer, Celia und Dietz, Andreas und Dirscherl, Mariel und Künzer, Claudia (2020) Deep learning reveals seasonal patterns of Antarctic ice shelf front fluctuations. EGU 2020, 2020-05-04 - 2020-05-08, Wien.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The Antarctic ice sheet drains ice through its peripheral ice shelves and glaciers making them an important factor for ice sheet mass balance. The extent of ice shelves and their calving front position influences ice sheet discharge and can yield valuable information on ice dynamics. Moreover, glacier fronts can have strong seasonal variations of retreat and advance. Yet, little is known about the seasonal pattern of Antarctic calving front fluctuations and their effect on ice sheet dynamics. The current developments in remote sensing and big data processing allow accurate monitoring of the Antarctic coastline. But to derive monthly calving front positions, the traditional approach of manual delineation is too time-consuming to cope with the temporal and spatial abundance of contemporary satellite missions. To create an up to date monitoring of changes in the Antarctic coastline a fully-automated approach is necessary. Automation of ice front delineation is a very challenging task as conventional edge detection methods fail due to the very low contrast between shelf ice and sea ice. Therefore, to exploit the abundance of available Sentinel-1 imagery over Antarctica, we created an automated workflow to extract monthly ice shelf front positions from Sentinel-1 imagery. The core of our processing chain is the deep learning architecture U-Net trained with about 44.000 image tiles covering parts of the Antarctic coastline during various seasons. Post-processing allows generating shapefiles of front positions and creating time series of seasonal ice shelf front fluctuations. We demonstrate our proposed method on selected ice shelves along the West and East Antarctic coastline and present intra-annual changes of calving front positions. This allows us to investigate seasonal change patterns of Antarctic ice shelves between 2014 and 2019 (depending on Sentinel-1 data availability) and to obtain a better picture on current Antarctic ice shelf front dynamics.

elib-URL des Eintrags:https://elib.dlr.de/135505/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Deep learning reveals seasonal patterns of Antarctic ice shelf front fluctuations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Baumhoer, CeliaCelia.Baumhoer (at) dlr.dehttps://orcid.org/0000-0003-1339-2288NICHT SPEZIFIZIERT
Dietz, AndreasAndreas.Dietz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dirscherl, MarielMariel.Dirscherl (at) dlr.dehttps://orcid.org/0000-0002-3324-7646NICHT SPEZIFIZIERT
Künzer, ClaudiaClaudia.Kuenzer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2020
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seite 1
Status:veröffentlicht
Stichwörter:calving front, Antarctica, glacier, deep learning, U-Net
Veranstaltungstitel:EGU 2020
Veranstaltungsort:Wien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:4 Mai 2020
Veranstaltungsende:8 Mai 2020
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Baumhoer, Dr. Celia
Hinterlegt am:21 Jul 2020 11:20
Letzte Änderung:24 Apr 2024 20:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.