elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Evaluating Prediction Models for Mapping Canopy Chlorophyll Content Across Biomes

Ali, Abebe und Darvishzadeh, Roshanak und Skidmore, Andrew und Heurich, Marco und Paganini, Marc und Heiden, Uta und Mücher, S. (2020) Evaluating Prediction Models for Mapping Canopy Chlorophyll Content Across Biomes. Remote Sensing, 12 (1788), Seiten 1-23. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs12111788. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Kurzfassung

Accurate measurement of canopy chlorophyll content (CCC) is essential for the understanding of terrestrial ecosystem dynamics through monitoring and evaluating properties such as carbon and water flux, productivity, light use efficiency as well as nutritional and environmental stresses. Information on the amount and distribution of CCC helps to assess and report biodiversity indicators related to ecosystem processes and functional aspects. Therefore, measuring CCC continuously and globally from earth observation data is critical to monitor the status of the biosphere. However, generic and robust methods for regional and global mapping of CCC are not well defined. This study aimed at examining the spatiotemporal consistency and scalability of selected methods for CCC mapping across biomes. Four methods (i.e., radiative transfer models (RTMs) inversion using a look-up table (LUT), the biophysical processor approach integrated into the Sentinel application platform (SNAP toolbox), simple ratio vegetation index (SRVI), and partial least square regression (PLSR)) were evaluated. Similarities and differences among CCC products generated by applying the four methods on actual Sentinel-2 data in four biomes (temperate forest, tropical forest, wetland, and Arctic tundra) were examined by computing statistical measures and spatiotemporal consistency pairwise comparisons. Pairwise comparison of CCC predictions by the selected methods demonstrated strong agreement. The highest correlation (R2 = 0.93, RMSE = 0.4371 g/m2) was obtained between CCC predictions of PROSAIL inversion by LUT and SNAP toolbox approach in a wetland when a single Sentinel-2 image was used. However, when time-series data were used, it was PROSAIL inversion against SRVI (R2 = 0.88, RMSE = 0.19) that showed greatest similarity to the single date predictions (R2 = 0.83, RMSE = 0.17 g/m2) in this biome. Generally, the CCC products obtained using the SNAP toolbox approach resulted in a systematic over/under-estimation of CCC. RTMs inversion by LUT (INFORM and PROSAIL) resulted in a non-biased, spatiotemporally consistent prediction of CCC with a range closer to expectations. Therefore, the RTM inversion using LUT approaches particularly, INFORM for ‘forest’ and PROSAIL for ‘short vegetation’ ecosystems, are recommended for CCC mapping from Sentinel 2 data for worldwide mapping of CCC. Additional validation of the two RTMs with field data of CCC across biomes is required in the future.

elib-URL des Eintrags:https://elib.dlr.de/135121/
Dokumentart:Zeitschriftenbeitrag
Titel:Evaluating Prediction Models for Mapping Canopy Chlorophyll Content Across Biomes
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ali, AbebeUniversity of Twente, Department of Natural Resources (ITC)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Darvishzadeh, Roshanakr.darvish (at) utwente.nlNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Skidmore, Andrewa.k.skidmore (at) utwente.nlNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Heurich, MarcoNationalparkverwaltung Bayerischer WaldNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Paganini, Marcmarc.paganini (at) esa.intNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Heiden, Utauta.heiden (at) dlr.dehttps://orcid.org/0000-0002-3865-1912NICHT SPEZIFIZIERT
Mücher, S.sander.mucher (at) wur.nlNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:1 Juni 2020
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:12
DOI:10.3390/rs12111788
Seitenbereich:Seiten 1-23
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:canopy chlorophyll content (CCC); SNAP toolbox; INFORM; PROSAIL; SRVI; PLSR; Sentinel-2
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Heiden, Dr.rer.nat. Uta
Hinterlegt am:04 Jun 2020 11:18
Letzte Änderung:05 Jun 2020 12:34

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.