elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

The vertical structure and spatial variability of lower-tropospheric water vapor and clouds in the trades

Naumann, Ann Kristin und Kiemle, Christoph (2020) The vertical structure and spatial variability of lower-tropospheric water vapor and clouds in the trades. Atmospheric Chemistry and Physics (ACP), Seiten 6129-6145. Copernicus Publications. doi: 10.5194/acp-20-6129-2020. ISSN 1680-7316.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://www.atmos-chem-phys.net/20/6129/2020/

Kurzfassung

Horizontal and vertical variability of water vapor is omnipresent in the tropics but its interaction with cloudiness poses challenges for weather and climate models. In this study we compare airborne lidar measurements from a summer and a winter field campaign in the tropical Atlantic with high-resolution simulations to analyse the water vapor distributions in the trade wind regime, its covariation with cloudiness and their representation in simulations. Across model grid spacing from 300 m to 2.5 km, the simulations show good skill in reproducing the water vapor distribution in the trades as measured by the lidar. An exception to this is a pronounced moist model bias at the top of the shallow cumulus layer in the dry winter season which is accompanied by a too weak gradient at the inversion near the cloud top. The model’s underestimation of water vapor variability in the cloud and subcloud layer occurs in both seasons but is less pronounced than the moist model bias at the inversion. Despite the model’s insensitivity to resolution from hecto- to kilometer scale for the distribution of water vapor, cloud fraction decreases strongly with increasing model resolution and is not converged at hectometer grid spacing. The observed cloud deepening with increasing water vapor path is captured well across model resolution but the concurrent transition from cloud-free to low cloud fraction is better represented at hectometer resolution. In particular, in the wet summer season the simulations with kilometer-scale resolution overestimate the observed cloud fraction near the inversion but lack condensate near the observed cloud base. This illustrates how a model’s ability to properly capture the water vapor distribution does not need to translate into an adequate representation of shallow cumulus clouds that live at the tail of the water vapor distribution.

elib-URL des Eintrags:https://elib.dlr.de/135055/
Dokumentart:Zeitschriftenbeitrag
Titel:The vertical structure and spatial variability of lower-tropospheric water vapor and clouds in the trades
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Naumann, Ann KristinMPI für Meteorologie, HamburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kiemle, ChristophDLR, IPAhttps://orcid.org/0000-0003-1231-2813NICHT SPEZIFIZIERT
Datum:Mai 2020
Erschienen in:Atmospheric Chemistry and Physics (ACP)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.5194/acp-20-6129-2020
Seitenbereich:Seiten 6129-6145
Verlag:Copernicus Publications
ISSN:1680-7316
Status:veröffentlicht
Stichwörter:shallow convection, trade clouds, water vapor lidar, ICON model
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - LIDAR-Forschung und - Entwicklung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Lidar
Hinterlegt von: Kiemle, Dr.rer.nat. Christoph
Hinterlegt am:26 Mai 2020 13:56
Letzte Änderung:26 Mai 2020 13:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.