del Águila, Ana und Efremenko, Dmitry S. und Molina García, Víctor und Kataev, M.Yu (2020) Cluster Low-Streams Regression Method for Hyperspectral Radiative Transfer Computations: Cases of O2 A- and CO2 Bands. Remote Sensing, 12 (8), Seiten 1-19. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs12081250. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
11MB |
Offizielle URL: https://www.mdpi.com/2072-4292/12/8/1250
Kurzfassung
Current atmospheric composition sensors provide a large amount of high spectral resolution data. The accurate processing of this data employs time-consuming line-by-line (LBL) radiative transfer models (RTMs). In this paper, we describe a method to accelerate hyperspectral radiative transfer models based on the clustering of the spectral radiances computed with a low-stream RTM and the regression analysis performed for the low-stream and multi-stream RTMs within each cluster. This approach, which we refer to as the Cluster Low-Streams Regression (CLSR) method, is applied for computing the radiance spectra in the O2 A-band at 760 nm and the CO2 band at 1610 nm for five atmospheric scenarios. The CLSR method is also compared with the principal component analysis (PCA)-based RTM, showing an improvement in terms of accuracy and computational performance over PCA-based RTMs. As low-stream models, the two-stream and the single-scattering RTMs are considered. We show that the error of this approach is modulated by the optical thickness of the atmosphere. Nevertheless, the CLSR method provides a performance enhancement of almost two orders of magnitude compared to the LBL model, while the error of the technique is below 0.1% for both bands.
elib-URL des Eintrags: | https://elib.dlr.de/134698/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Cluster Low-Streams Regression Method for Hyperspectral Radiative Transfer Computations: Cases of O2 A- and CO2 Bands | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 10 April 2020 | ||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 12 | ||||||||||||||||||||
DOI: | 10.3390/rs12081250 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-19 | ||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | hyperspectral data; fast radiative transfer models; acceleration techniques; regression; O2 A-band; CO2 band; GOSAT; TROPOMI | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | Vorhaben Spektroskopische Verfahren in der Fernerkundung (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||
Hinterlegt von: | del Aguila Perez, Ana | ||||||||||||||||||||
Hinterlegt am: | 22 Apr 2020 12:03 | ||||||||||||||||||||
Letzte Änderung: | 25 Okt 2023 08:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags