elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Artificial Learning Dispatch Planning with Probabilistic Forecasts: Using Uncertainties as an Asset

do amaral Burghi, Ana Carolina und Hirsch, Tobias und Pitz-Paal, Robert (2020) Artificial Learning Dispatch Planning with Probabilistic Forecasts: Using Uncertainties as an Asset. Energies, 13, Seite 616. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en13030616. ISSN 1996-1073.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Offizielle URL: https://doi.org/10.3390/en13030616

Kurzfassung

Weather forecast uncertainty is a key element for energy market volatility. By intelligently considering uncertainties on the schedule development, renewable energy systems with storage could improve dispatching accuracy, and therefore, effectively participate in electricity wholesale markets. Deterministic forecasts have been traditionally used to support dispatch planning, representing reduced or no uncertainty information about the future weather. Aiming at better representing the uncertainties involved, probabilistic forecasts have been developed to increase forecasting accuracy. For the dispatch planning, this can highly influence the development of a more precise schedule. This work extends a dispatch planning method to the use of probabilistic weather forecasts. The underlying method used a schedule optimizer coupled to a post-processing machine learning algorithm. This machine learning algorithm was adapted to include probabilistic forecasts, considering their additional information on uncertainties. This post-processing applied a calibration of the planned schedule considering the knowledge about uncertainties obtained from similar past situations. Simulations performed with a concentrated solar power plant model following the proposed strategy demonstrated promising financial improvement and relevant potential in dealing with uncertainties. Results especially show that information included in probabilistic forecasts can increase financial revenues up to 15% (in comparison to a persistence solar driven approach) if processed in a suitable way.

elib-URL des Eintrags:https://elib.dlr.de/134510/
Dokumentart:Zeitschriftenbeitrag
Titel:Artificial Learning Dispatch Planning with Probabilistic Forecasts: Using Uncertainties as an Asset
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
do amaral Burghi, Ana CarolinaAna.doAmaralBurghi (at) dlr.dehttps://orcid.org/0000-0002-5058-9162NICHT SPEZIFIZIERT
Hirsch, Tobiastobias.hirsch (at) dlr.dehttps://orcid.org/0000-0003-0063-0128NICHT SPEZIFIZIERT
Pitz-Paal, RobertRobert.Pitz-Paal (at) dlr.dehttps://orcid.org/0000-0002-3542-3391NICHT SPEZIFIZIERT
Datum:1 Februar 2020
Erschienen in:Energies
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:13
DOI:10.3390/en13030616
Seitenbereich:Seite 616
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:1996-1073
Status:veröffentlicht
Stichwörter:renewable systems storage dispatch optimization machine learning probabilistic forecasts
HGF - Forschungsbereich:Energie
HGF - Programm:Erneuerbare Energie
HGF - Programmthema:Konzentrierende solarthermische Technologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Neue Wärmeträgerfluide (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Solarforschung > Linienfokussierende Systeme
Hinterlegt von: Hirsch, Dr.-Ing. Tobias
Hinterlegt am:30 Mär 2020 08:35
Letzte Änderung:25 Okt 2023 08:15

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.