Bittner, Ksenia (2020) Building Information Extraction and Refinement from VHR Satellite Imagery using Deep Learning Techniques. Dissertation, University of Osnabrück.
PDF
34MB |
Kurzfassung
Building information extraction and reconstruction from satellite images is an essential task for many applications related to 3D city modeling, planning, disaster management, navigation, and decision-making. Building information can be obtained and interpreted from several data, like terrestrial measurements, airplane surveys, and space-borne imagery. However, the latter acquisition method outperforms the others in terms of cost and worldwide coverage: Space-borne platforms can provide imagery of remote places, which are inaccessible to other missions, at any time. Because the manual interpretation of high-resolution satellite image is tedious and time consuming, its automatic analysis continues to be an intense field of research. At times however, it is difficult to understand complex scenes with dense placement of buildings, where parts of buildings may be occluded by vegetation or other surrounding constructions, making their extraction or reconstruction even more difficult. Incorporation of several data sources representing different modalities may facilitate the problem. The goal of this dissertation is to integrate multiple high-resolution remote sensing data sources for automatic satellite imagery interpretation with emphasis on building information extraction and refinement.
elib-URL des Eintrags: | https://elib.dlr.de/134464/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Dissertation) | ||||||||
Titel: | Building Information Extraction and Refinement from VHR Satellite Imagery using Deep Learning Techniques | ||||||||
Autoren: |
| ||||||||
Datum: | 2020 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Seitenanzahl: | 176 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | deep learning; building footprint extraction; fully convolutional neural network; World View-1 Imagery; Unet; GAN; stereo imagery; stereo DSM; pansharpening | ||||||||
Institution: | University of Osnabrück | ||||||||
Abteilung: | Photogrammetry and Image Analysis | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Verkehr | ||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - D.MoVe (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||
Hinterlegt von: | Bittner, Ksenia | ||||||||
Hinterlegt am: | 19 Mär 2020 10:13 | ||||||||
Letzte Änderung: | 06 Jul 2020 10:04 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags