Contreras, Jhonatan und Denzler, Joachim und Sickert, Sven (2019) Automatically Estimating Forestal Characteristics in 3D Point Clouds using Deep Learning. iDiv Annual Conference 2019, 2019-08-29 - 2019-08-30, Leipzig, Germany.
PDF
- Nur DLR-intern zugänglich
72kB |
Kurzfassung
Biodiversity changes can be monitored using georeferenced and multitempo-ral data. Those changes refer to the process of automatically identifying differ-ences in the measurements computed over time. The height and the Diameterat Breast Height of the trees can be measured at different times. The mea-surements of individual trees can be tracked over the time resulting in growthrates, tree survival, among other possibles applications. We propose a deeplearning-based framework for semantic segmentation, which can manage largepoint clouds of forest areas with high spatial resolution. Our method divides apoint cloud into geometrically homogeneous segments. Then, a global feature isobtained from each segment, applying a deep learning network called PointNet.Finally, the local information of the adjacent segments is included through anadditional sub-network which applies edge convolutions. We successfully trainand test in a data set which covers an area with multiple trees. Two addi-tional forest areas were also tested. The semantic segmentation accuracy wastested using F1-score for four semantic classes:leaves(F1 = 0.908),terrain(F1 = 0.921),trunk(F1 = 0.848) anddead wood(F1 = 0.835). Furthermore,we show how our framework can be extended to deal with forest measurementssuch as measuring the height of the trees and the DBH.
elib-URL des Eintrags: | https://elib.dlr.de/133241/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Automatically Estimating Forestal Characteristics in 3D Point Clouds using Deep Learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 29 August 2019 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||
Stichwörter: | Semantic Segmentation, Point Cloud, Deep Learning, Change Detection. | ||||||||||||||||
Veranstaltungstitel: | iDiv Annual Conference 2019 | ||||||||||||||||
Veranstaltungsort: | Leipzig, Germany | ||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||
Veranstaltungsbeginn: | 29 August 2019 | ||||||||||||||||
Veranstaltungsende: | 30 August 2019 | ||||||||||||||||
Veranstalter : | German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||
Standort: | Jena | ||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Bürgerwissenschaften | ||||||||||||||||
Hinterlegt von: | Contreras, Jhonatan | ||||||||||||||||
Hinterlegt am: | 23 Jan 2020 15:52 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags